1 Writing Cache Friendly Code Make the common case go fast  Focus on the inner loops of the core functions Minimize the misses in the inner loops  Repeated.

Slides:



Advertisements
Similar presentations
CS492B Analysis of Concurrent Programs Memory Hierarchy Jaehyuk Huh Computer Science, KAIST Part of slides are based on CS:App from CMU.
Advertisements

Example How are these parameters decided?. Row-Order storage main() { int i, j, a[3][4]={1,2,3,4,5,6,7,8,9,10,11,12}; for (i=0; i
Instructor: Erol Sahin
Today Memory hierarchy, caches, locality Cache organization
Carnegie Mellon 1 Cache Memories : Introduction to Computer Systems 10 th Lecture, Sep. 23, Instructors: Randy Bryant and Dave O’Hallaron.
Data Locality CS 524 – High-Performance Computing.
Memory System Performance October 29, 1998 Topics Impact of cache parameters Impact of memory reference patterns –matrix multiply –transpose –memory mountain.
Matrix Multiplication (i,j,k) for I = 1 to n do for j = 1 to n do for k = 1 to n do C[i,j] = C[i,j] + A[i,k] x B[k,j] endfor.
Cache Memories May 5, 2008 Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance EECS213.
Cache Memories February 24, 2004 Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance class13.ppt.
Data Locality CS 524 – High-Performance Computing.
CS 3214 Computer Systems Godmar Back Lecture 11. Announcements Stay tuned for Exercise 5 Project 2 due Sep 30 Auto-fail rule 2: –Need at least Firecracker.
Introduction to Computer Systems* Topics: Theme Five great realities of computer systems How this fits within CS curriculum F ’07 class01a.ppt
CPSC 312 Cache Memories Slides Source: Bryant Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on.
Fast matrix multiplication; Cache usage
Cache Memories Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance CS213.
Systems I Locality and Caching
ECE Dept., University of Toronto
Cache Lab Implementation and Blocking
Cache Performance Metrics
1 Cache Memories Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O’Hallaron.
Recitation 7: 10/21/02 Outline Program Optimization –Machine Independent –Machine Dependent Loop Unrolling Blocking Annie Luo
– 1 – , F’02 Caching in a Memory Hierarchy Larger, slower, cheaper storage device at level k+1 is partitioned into blocks.
Lecture 13: Caching EEN 312: Processors: Hardware, Software, and Interfacing Department of Electrical and Computer Engineering Spring 2014, Dr. Rozier.
Lecture 20: Locality and Caching CS 2011 Fall 2014, Dr. Rozier.
Introduction to Computer Systems Topics: Theme Five great realities of computer systems (continued) “The class that bytes”
ECE 454 Computer Systems Programming Memory performance (Part II: Optimizing for caches) Ding Yuan ECE Dept., University of Toronto
Code and Caches 1 Computer Organization II © CS:APP & McQuain Cache Memory and Performance Many of the following slides are taken with permission.
1 Seoul National University Cache Memories. 2 Seoul National University Cache Memories Cache memory organization and operation Performance impact of caches.
Memory Hierarchy II. – 2 – Last class Caches Direct mapped E=1 (One cache line per set) Each main memory address can be placed in exactly one place in.
1 Cache Memory. 2 Outline Cache mountain Matrix multiplication Suggested Reading: 6.6, 6.7.
Cache Memories February 28, 2002 Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance Reading:
Cache Memories Topics Generic cache-memory organization Direct-mapped caches Set-associative caches Impact of caches on performance CS 105 Tour of the.
Carnegie Mellon Introduction to Computer Systems /18-243, spring th Lecture, Feb. 19 th Instructors: Gregory Kesden and Markus Püschel.
1 Cache Memories. 2 Today Cache memory organization and operation Performance impact of caches  The memory mountain  Rearranging loops to improve spatial.
Lecture 5: Memory Performance. Types of Memory Registers L1 cache L2 cache L3 cache Main Memory Local Secondary Storage (local disks) Remote Secondary.
Cache Memories Topics Generic cache-memory organization Direct-mapped caches Set-associative caches Impact of caches on performance CS 105 Tour of the.
Advanced Topics: Prefetching ECE 454 Computer Systems Programming Topics: UG Machine Architecture Memory Hierarchy of Multi-Core Architecture Software.
Cache Memories Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance cache.ppt CS 105 Tour.
Memory Hierarchy Computer Organization and Assembly Languages Yung-Yu Chuang 2007/01/08 with slides by CMU
Optimizing for the Memory Hierarchy Topics Impact of caches on performance Memory hierarchy considerations Systems I.
Cache Memories February 26, 2008 Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance The.
Vassar College 1 Jason Waterman, CMPU 224: Computer Organization, Fall 2015 Cache Memories CMPU 224: Computer Organization Nov 19 th Fall 2015.
DEPENDENCE-DRIVEN LOOP MANIPULATION Based on notes by David Padua University of Illinois at Urbana-Champaign 1.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Cache Memories CENG331 - Computer Organization Instructors:
Cache Memories CENG331 - Computer Organization Instructor: Murat Manguoglu(Section 1) Adapted from: and
Programming for Cache Performance Topics Impact of caches on performance Blocking Loop reordering.
Carnegie Mellon 1 Cache Memories Authors: Adapted from slides by Randy Bryant and Dave O’Hallaron.
Cache Memories.
Instructor: Erol Sahin
Optimization III: Cache Memories
Cache Memories CSE 238/2038/2138: Systems Programming
The Hardware/Software Interface CSE351 Winter 2013
Section 7: Memory and Caches
CS 105 Tour of the Black Holes of Computing
The Memory Hierarchy : Memory Hierarchy - Cache
Authors: Adapted from slides by Randy Bryant and Dave O’Hallaron
Caches III CSE 351 Spring 2017 Instructor: Ruth Anderson
Cache Memories Topics Cache memory organization Direct mapped caches
“The course that gives CMU its Zip!”
Memory Hierarchy II.
Memory Hierarchy and Cache Memories CENG331 - Computer Organization
Cache Memories Professor Hugh C. Lauer CS-2011, Machine Organization and Assembly Language (Slides include copyright materials from Computer Systems:
Cache Performance October 3, 2007
Cache Memories Lecture, Oct. 30, 2018
Computer Organization and Assembly Languages Yung-Yu Chuang 2006/01/05
Cache Memories.
Cache Memory and Performance
Writing Cache Friendly Code

Presentation transcript:

1 Writing Cache Friendly Code Make the common case go fast  Focus on the inner loops of the core functions Minimize the misses in the inner loops  Repeated references to variables are good (temporal locality)  Stride-1 reference patterns are good (spatial locality) Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories.

2 Today Performance impact of caches  The memory mountain  Rearranging loops to improve spatial locality  Using blocking to improve temporal locality

3 The Memory Mountain Read throughput (read bandwidth)  Number of bytes read from memory per second (MB/s) Memory mountain: Measured read throughput as a function of spatial and temporal locality.  Compact way to characterize memory system performance.

4 Memory Mountain Test Function /* The test function */ void test(int elems, int stride) { int i, result = 0; volatile int sink; for (i = 0; i < elems; i += stride) result += data[i]; sink = result; /* So compiler doesn't optimize away the loop */ } /* Run test(elems, stride) and return read throughput (MB/s) */ double run(int size, int stride, double Mhz) { double cycles; int elems = size / sizeof(int); test(elems, stride); /* warm up the cache */ cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */ return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */ }

5 The Memory Mountain Intel Core i7 32 KB L1 i-cache 32 KB L1 d-cache 256 KB unified L2 cache 8M unified L3 cache All caches on-chip

6 The Memory Mountain Intel Core i7 32 KB L1 i-cache 32 KB L1 d-cache 256 KB unified L2 cache 8M unified L3 cache All caches on-chip Slopes of spatial locality

7 The Memory Mountain Intel Core i7 32 KB L1 i-cache 32 KB L1 d-cache 256 KB unified L2 cache 8M unified L3 cache All caches on-chip Slopes of spatial locality Ridges of Temporal locality

8 Today Performance impact of caches  The memory mountain  Rearranging loops to improve spatial locality  Using blocking to improve temporal locality

9 Miss Rate Analysis for Matrix Multiply Assume:  Line size = 32B (big enough for four 64-bit words)  Matrix dimension (N) is very large  Approximate 1/N as 0.0  Cache is not even big enough to hold multiple rows Analysis Method:  Look at access pattern of inner loop A k i B k j C i j

10 Matrix Multiplication Example Description:  Multiply N x N matrices  O(N 3 ) total operations  N reads per source element  N values summed per destination  but may be able to hold in register /* ijk */ for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; } /* ijk */ for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; } Variable sum held in register

11 Layout of C Arrays in Memory (review) C arrays allocated in row-major order  each row in contiguous memory locations Stepping through columns in one row:  for (i = 0; i < N; i++) sum += a[0][i];  accesses successive elements  if block size (B) > 4 bytes, exploit spatial locality  compulsory miss rate = 4 bytes / B Stepping through rows in one column:  for (i = 0; i < n; i++) sum += a[i][0];  accesses distant elements  no spatial locality!  compulsory miss rate = 1 (i.e. 100%)

12 Matrix Multiplication (ijk) /* ijk */ for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; } /* ijk */ for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; } ABC (i,*) (*,j) (i,j) Inner loop: Column- wise Row-wiseFixed Misses per inner loop iteration: ABC

13 Matrix Multiplication (jik) /* jik */ for (j=0; j<n; j++) { for (i=0; i<n; i++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum } /* jik */ for (j=0; j<n; j++) { for (i=0; i<n; i++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum } ABC (i,*) (*,j) (i,j) Inner loop: Row-wiseColumn- wise Fixed Misses per inner loop iteration: ABC

14 Matrix Multiplication (kij) /* kij */ for (k=0; k<n; k++) { for (i=0; i<n; i++) { r = a[i][k]; for (j=0; j<n; j++) c[i][j] += r * b[k][j]; } /* kij */ for (k=0; k<n; k++) { for (i=0; i<n; i++) { r = a[i][k]; for (j=0; j<n; j++) c[i][j] += r * b[k][j]; } ABC (i,*) (i,k)(k,*) Inner loop: Row-wise Fixed Misses per inner loop iteration: ABC

15 Matrix Multiplication (ikj) /* ikj */ for (i=0; i<n; i++) { for (k=0; k<n; k++) { r = a[i][k]; for (j=0; j<n; j++) c[i][j] += r * b[k][j]; } /* ikj */ for (i=0; i<n; i++) { for (k=0; k<n; k++) { r = a[i][k]; for (j=0; j<n; j++) c[i][j] += r * b[k][j]; } ABC (i,*) (i,k)(k,*) Inner loop: Row-wise Fixed Misses per inner loop iteration: ABC

16 Matrix Multiplication (jki) /* jki */ for (j=0; j<n; j++) { for (k=0; k<n; k++) { r = b[k][j]; for (i=0; i<n; i++) c[i][j] += a[i][k] * r; } /* jki */ for (j=0; j<n; j++) { for (k=0; k<n; k++) { r = b[k][j]; for (i=0; i<n; i++) c[i][j] += a[i][k] * r; } ABC (*,j) (k,j) Inner loop: (*,k) Column- wise Column- wise Fixed Misses per inner loop iteration: ABC

17 Matrix Multiplication (kji) /* kji */ for (k=0; k<n; k++) { for (j=0; j<n; j++) { r = b[k][j]; for (i=0; i<n; i++) c[i][j] += a[i][k] * r; } /* kji */ for (k=0; k<n; k++) { for (j=0; j<n; j++) { r = b[k][j]; for (i=0; i<n; i++) c[i][j] += a[i][k] * r; } ABC (*,j) (k,j) Inner loop: (*,k) FixedColumn- wise Column- wise Misses per inner loop iteration: ABC

18 Summary of Matrix Multiplication ijk (& jik): 2 loads, 0 stores misses/iter = 1.25 kij (& ikj): 2 loads, 1 store misses/iter = 0.5 jki (& kji): 2 loads, 1 store misses/iter = 2.0 for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; } for (k=0; k<n; k++) { for (i=0; i<n; i++) { r = a[i][k]; for (j=0; j<n; j++) c[i][j] += r * b[k][j]; } for (j=0; j<n; j++) { for (k=0; k<n; k++) { r = b[k][j]; for (i=0; i<n; i++) c[i][j] += a[i][k] * r; }

19 Core i7 Matrix Multiply Performance jki / kji ijk / jik kij / ikj

20 Today Performance impact of caches  The memory mountain  Rearranging loops to improve spatial locality  Using blocking to improve temporal locality

21 Example: Matrix Multiplication ab i j * c = c = (double *) calloc(sizeof(double), n*n); /* Multiply n x n matrices a and b */ void mmm(double *a, double *b, double *c, int n) { int i, j, k; for (i = 0; i < n; i++) for (j = 0; j < n; j++) for (k = 0; k < n; k++) c[i*n+j] += a[i*n + k]*b[k*n + j]; }

22 Cache Miss Analysis Assume:  Matrix elements are doubles  Cache block = 8 doubles  Cache size C << n (much smaller than n) First iteration:  n/8 + n = 9n/8 misses  Afterwards in cache: (schematic) * = n * = 8 wide

23 Cache Miss Analysis Assume:  Matrix elements are doubles  Cache block = 8 doubles  Cache size C << n (much smaller than n) Second iteration:  Again: n/8 + n = 9n/8 misses Total misses:  9n/8 * n 2 = (9/8) * n 3 n * = 8 wide

24 Blocked Matrix Multiplication c = (double *) calloc(sizeof(double), n*n); /* Multiply n x n matrices a and b */ void mmm(double *a, double *b, double *c, int n) { int i, j, k; for (i = 0; i < n; i+=B) for (j = 0; j < n; j+=B) for (k = 0; k < n; k+=B) /* B x B mini matrix multiplications */ for (i1 = i; i1 < i+B; i++) for (j1 = j; j1 < j+B; j++) for (k1 = k; k1 < k+B; k++) c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1]; } ab i1 j1 * c = c + Block size B x B

25 Cache Miss Analysis Assume:  Cache block = 8 doubles  Cache size C << n (much smaller than n)  Three blocks fit into cache: 3B 2 < C First (block) iteration:  B 2 /8 misses for each block  2n/B * B 2 /8 = nB/4 (omitting matrix c)  Afterwards in cache (schematic) * = * = Block size B x B n/B blocks

26 Cache Miss Analysis Assume:  Cache block = 8 doubles  Cache size C << n (much smaller than n)  Three blocks fit into cache: 3B 2 < C Second (block) iteration:  Same as first iteration  2n/B * B 2 /8 = nB/4 Total misses:  nB/4 * (n/B) 2 = n 3 /(4B) * = Block size B x B n/B blocks

27 Summary No blocking: (9/8) * n 3 Blocking: 1/(4B) * n 3 Suggest largest possible block size B, but limit 3B 2 < C! Reason for dramatic difference:  Matrix multiplication has inherent temporal locality:  Input data: 3n 2, computation 2n 3  Every array elements used O(n) times!  But program has to be written properly

28 Concluding Observations Programmer can optimize for cache performance  How data structures are organized  How data are accessed  Nested loop structure  Blocking is a general technique All systems favor “cache friendly code”  Getting absolute optimum performance is very platform specific  Cache sizes, line sizes, associativities, etc.  Can get most of the advantage with generic code  Keep working set reasonably small (temporal locality)  Use small strides (spatial locality)