Genetic Variations in NER Pathway, Smoking and 11 Cancer Sites: a Pooled Study Yi Ren Wang.

Slides:



Advertisements
Similar presentations
Which Phenotypes Can be Predicted from a Genome Wide Scan of Single Nucleotide Polymorphisms (SNPs): Ethnicity vs. Breast Cancer Mohsen Hajiloo, Russell.
Advertisements

M2 Medical Epidemiology
Tobacco & Cancer. Tobacco Use And Cancer Tobacco use, the most preventable cause of death in our society, accounts for at least 30% of all cancer deaths.
Genetic susceptibility: Polymorphisms of the 8q24 chromosome S. Lani Park 05/07/09.
Objectives Cover some of the essential concepts for GWAS that have not yet been covered Hardy-Weinberg equilibrium Meta-analysis SNP Imputation Review.
Standardization within the consortium Cancer consortia Paolo Boffetta IARC.
Estimating the penetrances of breast and ovarian cancer in the carriers of BRCA1/2 mutations Silvano Presciuttini University of Pisa, Italy.
SOME ADDITIONAL POINTS ON MEASUREMENT ERROR IN EPIDEMIOLOGY Sholom May 28, 2011 Supplement to Prof. Carroll’s talk II.
1June In Chapter 19: 19.1 Preventing Confounding 19.2 Simpson’s Paradox (Severe Confounding) 19.3 Mantel-Haenszel Methods 19.4 Interaction.
Single nucleotide polymorphisms Usman Roshan. SNPs DNA sequence variations that occur when a single nucleotide is altered. Must be present in at least.
Control of skin cancer by the circadian rhythm Background presented by Nathalie Javidi-Sharifi Druker Lab.
Population Genetics Unit 4 AP Biology.
PROSTATE CANCER AND SMOKING Kym Hickey MBBS, MPH Repatriation Medical Authority, Australia.
Selecting TagSNPs in Candidate Genes for Genetic Association Studies Shehnaz K. Hussain, PhD, ScM Assistant Professor Department of Epidemiology, UCLA.
Genetic Variations in the PI3K/PTEN/AKT/mTOR Pathway are Associated with Clinical Outcomes in Esophageal Cancer Patients Treated with Chemoradiotherapy.
Study Design / Data: Case-Control, Descriptives Basic Medical Statistics Course: Module C October 2010 Wilma Heemsbergen
Zuo-Feng Zhang, MD, PhD Epi242, Prospective:  Cohort Studies: Observational studies  Intervention Studies, Clinical Trials  Nested Case-Control.
The polymorphisms and haplotypes of Pin1 gene are associated with the risk of lung cancer 吕嘉春, 赵红军,杨磊,刘斌,纪卫东,宾晓农 广州医学院 化学致癌研究所、呼吸疾病国家重点实验室 承国家自然科学基金项目.
Molecular and Genetic Epidemiology Kathryn Penney, ScD January 5, 2012.
Understanding Cancer. What Is Cancer? Different Kinds of Cancer Lung Breast (women) Colon Bladder Prostate (men) Some common sarcomas: Fat Bone Muscle.
Nasheed Moqueet* 1,2, James Young 2, Connie Lisle 3, Ron Carter 3 and Marina B. Klein 1,2 1 McGill University, Montreal, QC Canada; 2 Montreal Chest Inst.,
Systematic reviews of genetic association studies Robert Walton Fiona Fong 15 March 2013.
Genetic polymorphisms of XPD Arg156Arg and XPD Lys751Lys DNA repair genes in patients whit Acute Myeloid Leukemia First author: Crauciuc George Second.
The Hardy-Weinberg Theorem describes a nonevolving population
Maintaining Genetic Variation (Population Equilibrium) Populations have TWO competing factors: Remaining stable (not evolving) vs Changing (evolving)
Amsterdam Rehabilitation Research Center | Reade Multiple regression analysis Analysis of confounding and effectmodification Martin van de Esch, PhD.
Case(Control)-Free Multi-SNP Combinations in Case-Control Studies Dumitru Brinza and Alexander Zelikovsky Combinatorial Search (CS) for Disease-Association:
Population Genetics: Chapter 3 Epidemiology 217 January 16, 2011.
The Complexities of Data Analysis in Human Genetics Marylyn DeRiggi Ritchie, Ph.D. Center for Human Genetics Research Vanderbilt University Nashville,
Figure S1. Quantile-quantile plot in –log10 scale for the individual studies The red line represents concordance of observed and expected values. The shaded.
©Edited by Mingrui Zhang, CS Department, Winona State University, 2008 Identifying Lung Cancer Risks.
Environmental Tobacco Smoke (ETS) and the Risk of Head and Neck Cancer: INHANCE Consortium Yuan-Chin Amy Lee Gene-Environmental Epidemiology Group International.
October 15. In Chapter 19: 19.1 Preventing Confounding 19.2 Simpson’s Paradox 19.3 Mantel-Haenszel Methods 19.4 Interaction.
NAD(P)H: Quinone Oxidoreductase 1 (NQO1) Pro187Ser Polymorphism and the Risk of Lung Cancer: A Meta-Analysis Chun Chao, Zuo-Feng Zhang, Julien Berthiller,
From Genome-Wide Association Studies to Medicine Florian Schmitzberger - CS 374 – 4/28/2009 Stanford University Biomedical Informatics
C Reactive Protein Coronary Heart Disease Genetics Collaboration BMJ 2011;342:d548.
Tobacco-related cancers and inflammation-related SNPs Molecular markers of genetic susceptibility EPI 243 May 7, 2009 Sam S. Oh, MPH.
Two RANTES gene polymorphisms and their haplotypes in patients with myocardial infarction from two Slavonic populations Two RANTES gene polymorphisms and.
Jianfeng Xu, M.D., Dr.PH Professor of Public Health and Cancer Biology Director, Program for Genetic and Molecular Epidemiology of Cancer Associate Director,
Lecture 11. Topics in Omic Studies (Cancer Genomics, Transcriptomics and Epignomics) The Chinese University of Hong Kong CSCI5050 Bioinformatics and Computational.
The Application of Single Nucleotide Polymorphisms (SNPs) and Lung Cancer Risk Zuo-Feng Zhang, MD, PhD.
Role of CTLA-4 polymorphism in susceptibility to type 1 diabetes: Results of a family and a case-control study in Southern Tunisia Immunology Department,
Paolo Vineis University of Torino and ISI Foundation, Torino, Italy address: GENE-ENVIRONMENT INTERACTIONS IN CANCER.
The International Consortium. The International HapMap Project.
Complex Adaptive Systems and Human Health: Statistical Approaches in Pharmacogenomics Kim E. Zerba, Ph.D. Bristol-Myers Squibb FDA/Industry Statistics.
Identification of Single Nucleotide Polymorphisms Predictive of Sporadic Prostate Cancer Susceptibility Using a Case-Control Association.
Homework #3 is due 11/19 Bonus #2 is posted. Cancer: is the loss of control over cell division. Tumors are normal cells that are dividing inappropriately.
A Comprehensive Genomic Approach to the Identification of Predictive Markers using DNA and Tissue Repair Gene Polymorphisms in Radiation.
Introduction Patients and Methods Results Conclusion Table 1. Baseline characteristics of the 108 patients included in the biomarker analysis. Objectives.
IntroductionPatient baseline characteristics Conclusion The process of EGFR recycling is important mechanism of resistance of cetuximab in colorectal cancer.
Linkage. Announcements Problem set 1 is available for download. Due April 14. class videos are available from a link on the schedule web page, and at.
Linkage. Announcements Problem set 1 is available for download. Due April 14. class videos are available from a link on the schedule web page, and at.
GENETIC MARKERS OF CORONARY ARTERY DISEASE RISK GALYA ATANASOVA MD, PhD DOMINIC JAMES.
The Hardy-Weinberg theorem describes the gene pool of a nonevolving population. This theorem states that the frequencies of alleles and genotypes in a.
R2. 하효정 / 윤휘중 교수님 NEJM Introduction  Transplantation of hematopoietic cells  acute GVHD ?  The recipient and donor are HLA-DPB1–mismatched.
Molecular Epidemiology of Lung Cancer in Chinese Population Hongbing Shen, M.D., Ph.D Professor of Epidemiology Department of Epidemiology & Biostatistics.
Statins Reduce the Risk of Lung Cancer in Humans CHEST 2007; 131:1282–1288 R4 Byunghyuk Yang.
The epidemiological tool-box
Figure 1. Joint effect of rs and rs on prostate cancer aggressiveness and reclassification. (A) Joint effect of rs and rs on.
Consideration for Planning a Candidate Gene Association Study With TagSNPs Shehnaz K. Hussain, PhD, ScM Epidemiology 243: Molecular.
Copyright © 2009 American Medical Association. All rights reserved.
ASSOCIATIONS BETWEEN ANXA11 RS C/T, BTNL2 RS G/A, HLA CLASS I AND II POLYMORPHISMS AND SARCOIDOSIS EVOLUTION Manuel Vaz1, Bruno Lima2, Natália.
Come my friend. Let’s forget the cares of tomorrow
Coffee drinking and leukocyte telomere length: A meta-analysis
Evaluating Effect Measure Modification
Elliott P, et al. JAMA 2009;302:37-48.
Hardy - Weinberg Questions.
Treated with Neoadjuvant Therapy
Comparison of the frequency of nucleotide variation in the mtDNA D-loop region between stomach and other tumor cell lines. Comparison of the frequency.
Correlations between comutations of HRR-BER or HRR-MMR and tumor mutational burden, neoantigen load, and MSI-H. Correlations between comutations of HRR-BER.
Presentation transcript:

Genetic Variations in NER Pathway, Smoking and 11 Cancer Sites: a Pooled Study Yi Ren Wang

Nucleotide Excision Repair Pathway

DNA Damage and Repair  Long-term effects of DNA damage may lead to irreversible mutations, contributing to oncogenesis  Reduced DNA repair capacity may be related to an increased risk of cancers

DNA Repair  Base excision repair  Nucleotide excision repair  Mismatch repair  Double-strand-break repair

NER Pathway  Particularly important mechanism by which the cell can prevent unwanted mutations by removing the vast majority of UV-induced DNA damage  The primary mechanism for the repair of bulky and helical distorting DNA adducts generated by cigarette smoke  Therefore, reduced efficiency of NER could increase susceptibility to DNA damage, and thus increase risk of cancer.

NER Pathway

Study Design

Data Source  Los Angeles Study: Lung: 611, UADT: 601 Controls: 1040  Memorial Sloan Kettering Cancer Center Study: Prostate: 154, Bladder: 245, Kidney: 34, Testes: 32 Controls: 205  TaiXing Study: Liver: 195, Esophagus: 205, Stomach: 196 Controls: 394

Study Design  SAS 9.1 software was used for data analysis.  ORs and 95% CLs was computed using unconditional logistic regression  Potential confounding factors adjusted in pooled analysis: age, gender, ethnicity, tobacco smoking  χ 2 test is performed to evaluate Hardy- Weinberg equilibrium.

11 Cancer Sites  Lung  Oropharynx  Nasopharynx  Larynx  Esophagus  Bladder  Kidney  Liver  Stomach  Prostate  Testes Established association with smoking Association with smoking unknown

Candidate SNPs in NER Pathway GeneSNPData SourceAmino Acid Change XPCrs SNPlex? XPCrs SNPlex&Taqm an ? XPD/ERCC 2 rs238406SNPlexR156R XPD/ERCC 2 rs SNPlexD711D XPD/ERCC 2 rs13181SNPlexK751Q XPD/ERCC 2 rs SNPlexS835S XPG/ERCC 5 rs SNPlexC529S XPG/ERCC 5 rs17655SNPlexD1104H XPG/ERCC 5 rs SNPlexH46H ERCC6rs SNPlex&Taqm an R1230P ERCC6rs SNPlex&Taqm an Q1413R ERCC1rs SNPlex? Overall Kappa between SNPlex & Tapman = , indicating almost perfect agreement. 95% CI = (0.9446, )

Results

No deviation from Hardy-Weinberg equilibrium in controls detected SNPGENOTYPEControl (%) P ERCC1 rs G/G1121 ( 96.6%) A/G38 ( 3.3%) A/A2 ( 0.2%) ERCC6 rs A/A991 ( 69.8%) A/G386 ( 27.2%) G/G42 ( 3.0%) ERCC6 rs G/G1276 ( 88.0%) C/G162 ( 11.2%) C/C12 ( 0.8%) XPC rs C/G55 ( 53.9%) C/C33 ( 32.4%) G/G14 ( 13.7%) XPC rs A/A929 ( 77.2%) A/T237 ( 19.7%) T/T38 ( 3.2%) XPD/ERCC2 rs C/C432 ( 51.2%) C/T368 ( 43.7%) T/T43 ( 5.1%) XPD/ERCC2 rs13181T/T460 ( 43.9%) G/T448 ( 42.7%) G/G140 ( 13.4%) XPD/ERCC2 rs T/T535 ( 50.2%) C/T441 ( 41.4%) C/C90 ( 8.4%) XPD/ERCC2 rs238406G/T471 ( 59.8%) G/G195 ( 24.7%) T/T122 ( 15.5%) XPG/ERCC5 rs C/T525 ( 47.0%) T/T312 ( 27.9%) C/C280 ( 25.1%) XPG/ERCC5 rs17655C/G420 ( 46.7%) C/C337 ( 37.5%) G/G142 ( 15.8%) XPG/ERCC5 rs G/G801 ( 79.0%) C/G203 ( 20.0%) C/C10 ( 1.0%)

Pooled association analysis of NER SNPs with 11 cancer sites All Population SNP GENO TYPECase (%)Control (%)COR (95% CI)AOR (95% CI)SNP GENO TYPECase (%)Control (%)COR (95% CI)AOR (95% CI) XPCC/G75 ( 46.6%)55 ( 53.9%)ERCC1G/G1164 ( 96.8%)1121 ( 96.6%) rs C/C61 ( 37.9%)33 ( 32.4%)1.36 ( 0.78, 2.35)1.34 ( 0.76, 2.35) rs A/G36 ( 3.0%)38 ( 3.3%)0.91 ( 0.57, 1.45)0.53 ( 0.31, 0.88) G/G25 ( 15.5%)14 ( 13.7%)1.31 ( 0.62, 2.75)1.41 ( 0.64, 3.10)A/A3 ( 0.2%)2 ( 0.2%)1.44 ( 0.24, 8.66)2.01 ( 0.26,15.82) XPCA/A1081 ( 78.9%)929 ( 77.2%)ERCC6A/A1178 ( 74.6%)991 ( 69.8%) rs A/T258 ( 18.8%)237 ( 19.7%)0.94 ( 0.77, 1.14)1.02 ( 0.81, 1.29) rs A/G342 ( 21.6%)386 ( 27.2%)0.75 ( 0.63, 0.88)0.89 ( 0.74, 1.07) T/T31 ( 2.3%)38 ( 3.2%)0.70 ( 0.43, 1.14)0.83 ( 0.49, 1.41)G/G60 ( 3.8%)42 ( 3.0%)1.20 ( 0.80, 1.80)1.45 ( 0.93, 2.24) XPD/ERCC2C/C526 ( 55.0%)432 ( 51.2%)ERCC6G/G1404 ( 86.6%)1276 ( 88.0%) rs C/T378 ( 39.5%)368 ( 43.7%)0.84 ( 0.70, 1.02)0.91 ( 0.73, 1.13) rs C/G199 ( 12.3%)162 ( 11.2%)1.12 ( 0.90, 1.39)1.03 ( 0.81, 1.31) T/T52 ( 5.4%)43 ( 5.1%)0.99 ( 0.65, 1.52)1.09 ( 0.68, 1.76)C/C18 ( 1.1%)12 ( 0.8%)1.36 ( 0.65, 2.84)1.12 ( 0.50, 2.50) XPD/ERCC2T/T412 ( 45.7%)460 ( 43.9%)XPG/ERCC5C/T557 ( 45.0%)525 ( 47.0%) rs13181G/T374 ( 41.5%)448 ( 42.7%)0.93 ( 0.77, 1.13)0.96 ( 0.77, 1.19) rs T/T430 ( 34.7%)312 ( 27.9%)1.30 ( 1.08, 1.57)1.11 ( 0.90, 1.37) G/G115 ( 12.8%)140 ( 13.4%)0.92 ( 0.69, 1.21)0.88 ( 0.64, 1.21)C/C251 ( 20.3%)280 ( 25.1%)0.84 ( 0.69, 1.04)0.87 ( 0.69, 1.09) XPD/ERCC2T/T449 ( 49.0%)535 ( 50.2%)XPG/ERCC5C/G507 ( 48.5%)420 ( 46.7%) rs C/T402 ( 43.8%)441 ( 41.4%)1.09 ( 0.90, 1.31)1.06 ( 0.86, 1.30) rs17655C/C368 ( 35.2%)337 ( 37.5%)0.90 ( 0.74, 1.10)0.98 ( 0.79, 1.22) C/C66 ( 7.2%)90 ( 8.4%)0.87 ( 0.62, 1.23)0.83 ( 0.56, 1.21)G/G171 ( 16.3%)142 ( 15.8%)1.00 ( 0.77, 1.29)1.01 ( 0.76, 1.33) XPD/ERCC2G/T539 ( 59.2%)471 ( 59.8%)XPG/ERCC5G/G931 ( 82.1%)801 ( 79.0%) rs238406G/G253 ( 27.8%)195 ( 24.7%)1.13 ( 0.91, 1.42)1.08 ( 0.85, 1.38) rs C/G158 ( 13.9%)203 ( 20.0%)0.67 ( 0.53, 0.84)0.66 ( 0.51, 0.84) T/T118 ( 13.0%)122 ( 15.5%)0.85 ( 0.64, 1.12)0.81 ( 0.60, 1.11)C/C45 ( 4.0%)10 ( 1.0%)3.87 ( 1.94, 7.73)3.10 ( 1.44, 6.66)

Pooled association analysis stratified by smoking: Ever Smoker Ever Smoker SNP GENO TYPECase (%)Control (%)COR (95% CI)AOR (95% CI)SNP GENO TYPECase (%)Control (%)COR (95% CI)AOR (95% CI) XPCC/G 39 ( 47.0%)27 ( 61.4%) ERCC1G/G 788 ( 95.7%)554 ( 96.5%) rs C/C 39 ( 47.0%)12 ( 27.3%)2.25 ( 1.00, 5.07)2.12 ( 0.93, 4.82) rs A/G 32 ( 3.9%)20 ( 3.5%)1.12 ( 0.64, 1.99)0.71 ( 0.38, 1.33) G/G 5 ( 6.0%)5 ( 11.4%)0.69 ( 0.18, 2.63)0.65 ( 0.17, 2.53) A/A 3 ( 0.4%)0 ( 0.0%) XPCA/A 735 ( 75.3%)458 ( 75.0%) ERCC6A/A 803 ( 72.9%)510 ( 70.3%) rs A/T 213 ( 21.8%)132 ( 21.6%)1.01 ( 0.79, 1.29)1.01 ( 0.76, 1.33) rs A/G 252 ( 22.9%)197 ( 27.2%)0.81 ( 0.65, 1.01)0.85 ( 0.67, 1.07) T/T 28 ( 2.9%)21 ( 3.4%)0.83 ( 0.47, 1.48)0.89 ( 0.48, 1.64) G/G 47 ( 4.3%)18 ( 2.5%)1.66 ( 0.95, 2.89)1.77 ( 0.99, 3.16) XPD/ERCC2C/C 338 ( 53.4%)209 ( 51.5%) ERCC6G/G 967 ( 85.4%)628 ( 85.6%) rs C/T 254 ( 40.1%)174 ( 42.9%)0.90 ( 0.70, 1.17)0.78 ( 0.59, 1.04) rs C/G 152 ( 13.4%)99 ( 13.5%)1.00 ( 0.76, 1.31)0.90 ( 0.68, 1.20) T/T 41 ( 6.5%)23 ( 5.7%)1.10 ( 0.64, 1.89)0.92 ( 0.51, 1.67) C/C 13 ( 1.1%)7 ( 1.0%)1.21 ( 0.48, 3.04)0.94 ( 0.34, 2.55) XPD/ERCC2T/T 320 ( 44.6%)230 ( 43.2%) XPG/ERCC5C/T 395 ( 47.1%)258 ( 46.7%) rs13181G/T 303 ( 42.2%)234 ( 43.9%)0.93 ( 0.73, 1.18)0.93 ( 0.72, 1.21) rs T/T 263 ( 31.4%)150 ( 27.2%)1.15 ( 0.89, 1.48)1.12 ( 0.86, 1.48) G/G 95 ( 13.2%)69 ( 12.9%)0.99 ( 0.70, 1.41)0.86 ( 0.59, 1.26) C/C 180 ( 21.5%)144 ( 26.1%)0.82 ( 0.62, 1.07)0.74 ( 0.56, 0.99) XPD/ERCC2T/T 358 ( 49.2%)258 ( 47.6%) XPG/ERCC5C/G 330 ( 47.2%)206 ( 46.7%) rs C/T 320 ( 44.0%)240 ( 44.3%)0.96 ( 0.76, 1.21)0.93 ( 0.73, 1.20) rs17655C/C 266 ( 38.1%)177 ( 40.1%)0.94 ( 0.72, 1.21)0.98 ( 0.75, 1.30) C/C 50 ( 6.9%)44 ( 8.1%)0.82 ( 0.53, 1.27)0.73 ( 0.46, 1.17) G/G 103 ( 14.7%)58 ( 13.2%)1.11 ( 0.77, 1.60)1.19 ( 0.81, 1.75) XPD/ERCC2G/T 348 ( 57.9%)225 ( 59.7%) XPG/ERCC5G/G 619 ( 81.3%)393 ( 79.2%) rs238406G/G 177 ( 29.5%)88 ( 23.3%)1.30 ( 0.96, 1.77)1.30 ( 0.94, 1.80) rs C/G 113 ( 14.8%)102 ( 20.6%)0.70 ( 0.52, 0.95)0.66 ( 0.48, 0.90) T/T 76 ( 12.6%)64 ( 17.0%)0.77 ( 0.53, 1.11)0.79 ( 0.54, 1.17) C/C 29 ( 3.8%)1 ( 0.2%)18.41 ( 2.50,. )9.62 ( 1.27,72.68)

Pooled association analysis stratified by smoking: Never Smoker Never Smoker SNP GENO TYPECase (%)Control (%)COR (95% CI)AOR (95% CI)SNP GENO TYPECase (%)Control (%)COR (95% CI)AOR (95% CI) XPCC/G 34 ( 47.9%)28 ( 49.1%) ERCC1G/G 352 ( 98.9%)565 ( 96.6%) rs C/C 19 ( 26.8%)21 ( 36.8%)0.75 ( 0.34, 1.65)0.79 ( 0.35, 1.78) rs A/G 4 ( 1.1%)18 ( 3.1%)0.36 ( 0.12, 1.06)0.22 ( 0.07, 0.68) G/G 18 ( 25.4%)8 ( 14.0%)1.85 ( 0.70, 4.89)1.70 ( 0.63, 4.60) A/A 0 ( 0.0%)2 ( 0.3%) XPCA/A 326 ( 87.2%)469 ( 79.6%) ERCC6A/A 352 ( 77.9%)478 ( 69.3%) rs A/T 45 ( 12.0%)103 ( 17.5%)0.63 ( 0.43, 0.92)1.06 ( 0.67, 1.68) rs A/G 88 ( 19.5%)188 ( 27.2%)0.64 ( 0.48, 0.85)0.98 ( 0.70, 1.37) T/T 3 ( 0.8%)17 ( 2.9%)0.25 ( 0.07, 0.87)0.49 ( 0.13, 1.87) G/G 12 ( 2.7%)24 ( 3.5%)0.68 ( 0.33, 1.38)1.01 ( 0.46, 2.22) XPD/ERCC2C/C 171 ( 57.0%)221 ( 51.0%) ERCC6G/G 415 ( 89.4%)645 ( 90.6%) rs C/T 118 ( 39.3%)192 ( 44.3%)0.79 ( 0.59, 1.08)1.06 ( 0.75, 1.52) rs C/G 44 ( 9.5%)62 ( 8.7%)1.10 ( 0.74, 1.65)1.36 ( 0.85, 2.18) T/T 11 ( 3.7%)20 ( 4.6%)0.71 ( 0.33, 1.52)1.50 ( 0.60, 3.76) C/C 5 ( 1.1%)5 ( 0.7%)1.55 ( 0.45, 5.40)1.99 ( 0.49, 8.06) XPD/ERCC2T/T 92 ( 50.5%)229 ( 44.7%) XPG/ERCC5C/T 154 ( 41.0%)265 ( 47.2%) rs13181G/T 70 ( 38.5%)212 ( 41.4%)0.82 ( 0.57, 1.18)0.98 ( 0.65, 1.47) rs T/T 155 ( 41.2%)161 ( 28.6%)1.66 ( 1.23, 2.23)1.05 ( 0.75, 1.47) G/G 20 ( 11.0%)71 ( 13.9%)0.70 ( 0.40, 1.22)0.79 ( 0.42, 1.48) C/C 67 ( 17.8%)136 ( 24.2%)0.85 ( 0.60, 1.21)1.17 ( 0.77, 1.76) XPD/ERCC2T/T 90 ( 47.9%)276 ( 53.0%) XPG/ERCC5C/G 164 ( 50.6%)212 ( 46.6%) rs C/T 82 ( 43.6%)200 ( 38.4%)1.26 ( 0.89, 1.78)1.42 ( 0.95, 2.11) rs17655C/C 97 ( 29.9%)159 ( 34.9%)0.79 ( 0.57, 1.09)1.04 ( 0.72, 1.50) C/C 16 ( 8.5%)45 ( 8.6%)1.09 ( 0.59, 2.02)1.07 ( 0.53, 2.16) G/G 63 ( 19.4%)84 ( 18.5%)0.97 ( 0.66, 1.42)0.78 ( 0.52, 1.19) XPD/ERCC2G/T 178 ( 62.5%)243 ( 59.7%) XPG/ERCC5G/G 292 ( 83.9%)405 ( 78.6%) rs238406G/G 70 ( 24.6%)107 ( 26.3%)0.89 ( 0.62, 1.28)0.75 ( 0.51, 1.12) rs C/G 41 ( 11.8%)101 ( 19.6%)0.56 ( 0.38, 0.83)0.66 ( 0.43, 1.02) T/T 37 ( 13.0%)57 ( 14.0%)0.89 ( 0.56, 1.40)0.90 ( 0.55, 1.49) C/C 15 ( 4.3%)9 ( 1.7%)2.31 ( 1.00, 5.35)2.39 ( 0.91, 6.24)

Selected association of NER SNPs with cancer, stratified by cancer site. Cancer SiteSNPGENOTYPECase (%)Control (%)Crude OR (95% CI)Adjusted OR (95% CI) Lung Cancer ERCC6 rs A/A362 ( 69.1%)580 ( 64.5%) A/G132 ( 25.2%)288 ( 32.0%)0.73 ( 0.58, 0.94)0.84 ( 0.64, 1.10) G/G30 ( 5.7%)31 ( 3.4%)1.55 ( 0.92, 2.61)1.93 ( 1.09, 3.41) XPG/ERCC5 rs C/T169 ( 51.2%)285 ( 47.0%) T/T62 ( 18.8%)103 ( 17.0%)1.02 ( 0.70, 1.47)1.00 ( 0.66, 1.53) C/C99 ( 30.0%)218 ( 36.0%)0.77 ( 0.56, 1.04)0.66 ( 0.47, 0.92) Bladder Cancer ERCC1 rs G/G104 ( 85.2%)86 ( 78.9%) A/G17 ( 13.9%)23 ( 21.1%)0.61 ( 0.31, 1.22)0.35 ( 0.13, 0.95) A/A1 ( 0.8%)0 ( 0.0%) XPD/ERCC2 rs238406G/T80 ( 57.6%)81 ( 62.3%) G/G43 ( 30.9%)30 ( 23.1%)1.45 ( 0.83, 2.54)2.70 ( 1.10, 6.65) T/T16 ( 11.5%)19 ( 14.6%)0.85 ( 0.41, 1.78)3.61 ( 0.94,13.88) XPG/ERCC5 rs17655C/G59 ( 41.3%)81 ( 62.8%) C/C76 ( 53.1%)41 ( 31.8%)2.54 ( 1.53, 4.22)4.56 ( 1.92,10.84) G/G8 ( 5.6%)7 ( 5.4%)1.57 ( 0.54, 4.57)2.67 ( 0.54,13.18) Kidney Cancer XPG/ERCC5 rs17655C/G7 ( 46.7%)81 ( 62.8%) C/C8 ( 53.3%)41 ( 31.8%)2.26 ( 0.77, 6.66)4.38 ( 1.08,17.79) G/G0 ( 0.0%)7 ( 5.4%) Esophagus Cancer XPD/ERCC2 rs13181T/T30 ( 54.5%)411 ( 45.1%) G/T24 ( 43.6%)383 ( 42.0%)0.86 ( 0.49, 1.49)0.72 ( 0.40, 1.28) G/G1 ( 1.8%)118 ( 12.9%)0.12 ( 0.02, 0.86)0.10 ( 0.01, 0.74) Stomach Cancer ERCC6 rs G/G181 ( 94.3%)342 ( 90.5%) C/G8 ( 4.2%)34 ( 9.0%)0.44 ( 0.20, 0.98)0.37 ( 0.16, 0.87) C/C3 ( 1.6%)2 ( 0.5%)2.83 ( 0.47,17.12)3.18 ( 0.51,19.92) XPG/ERCC5 rs G/G165 ( 93.2%)323 ( 84.3%) C/G12 ( 6.8%)57 ( 14.9%)0.41 ( 0.22, 0.79)0.36 ( 0.18, 0.73) C/C0 ( 0.0%)3 ( 0.8%)

Previous Published Results on XPG/ERCC5 rs VS. Stomach Cancer  Shehnaz K. Hussain, et al. Genetic variation in immune regulation and DNA repair pathways and stomach cancer in China

Pooled association analysis of XPG/ERCC5 rs WITHOUT stomach cancer SNPGENOTYPECase (%)Control (%)COR (95% CI)AOR (95% CI) XPG/ERCC5G/G 766 ( 80.0%)801 ( 79.0%) rs C/G 146 ( 15.3%)203 ( 20.0%)0.75 ( 0.59, 0.95)0.70 ( 0.54, 0.91) C/C 45 ( 4.7%)10 ( 1.0%)4.71 ( 2.35, 9.40)3.31 ( 1.54, 7.10)

Haplotype Analysis of NER SNPs with combined cancer sites GENESNPHAPLOTYPEFrequency (%)Crude OR (95% CI)Adjusted OR (95% CI) XPC rs C-A60.20% 0.80 ( 0.64, 0.99) 1.05 ( 0.82, 1.34) rs G-A39.80% 0.77 ( 0.57, 1.06) 1.10 ( 0.77, 1.56) XPD/ERCC2 rs238406G-C-T-C6.49% 1.26 ( 0.61, 2.59) 1.42 ( 0.65, 3.11) rs G-C-T-T19.91% 0.92 ( 0.65, 1.31) 1.11 ( 0.75, 1.63) rs13181G-T-G-C6.72% 1.61 ( 0.90, 2.88) 1.16 ( 0.61, 2.19) rs G-T-G-T13.59% 1.82 ( 1.25, 2.66) 1.28 ( 0.84, 1.95) T-C-T-C10.43% 1.66 ( 0.99, 2.81) 1.66 ( 0.94, 2.94) T-C-T-T25.73% 1.76 ( 1.27, 2.43) 1.87 ( 1.31, 2.67) XPG/ERCC5 rs C-G-C6.63% 2.88 ( 1.66, 5.01) 3.28 ( 1.80, 6.00) rs17655G-C-C33.52% 1.31 ( 1.05, 1.62) 1.20 ( 0.95, 1.52) rs G-C-T23.03% 0.98 ( 0.75, 1.28) 1.28 ( 0.95, 1.74) G-G-T28.16% 0.73 ( 0.58, 0.93) 0.95 ( 0.72, 1.26) ERCC6 rs A-C6.67% 0.77 ( 0.52, 1.14) 0.94 ( 0.61, 1.43) rs A-G77.38% 0.88 ( 0.73, 1.06) 1.01 ( 0.82, 1.26) G-G15.77% 1.29 ( 0.99, 1.69) 1.02 ( 0.75, 1.37)

Strengths  Large sample size  Multiple SNPs analyzed  Increased statistical power from pooled analysis to detect modest effects  Population-based study design  Detailed questionnaire data

Limitations  Recall bias  Misclassification of genotype data  Validity of the pooled estimate can be threatened by the heterogeneity of the studies (study populations, study design, genotyping methodology etc.)  Bias from population stratification or population mixing due to mixed ethnic ancestry

Comparison of esophagus cancer results between Los Angeles Study and TaiXing Study Los Angeles StudyTaiXing Study SNP GEN OTYP E Case (%)Control (%)Adjusted OR (95% CI)Case (%)Control (%)Adjusted OR (95% CI) ERCC6 rs A/G20 ( 33.9%)288 ( 32.0%)1.10 ( 0.62, 1.95)22 ( 11.2%)45 ( 12.1%)0.89 ( 0.51, 1.57) XPD/ERCC2 rs C/C13 ( 50.0%)128 ( 38.2%)1.56 ( 0.67, 3.59)40 ( 27.2%)109 ( 29.1%)0.98 ( 0.63, 1.54) XPG/ERCC5 rs T/T10 ( 25.0%)103 ( 17.0%)1.21 ( 0.54, 2.71)18 ( 9.6%)28 ( 7.5%)1.04 ( 0.53, 2.02) XPG/ERCC5 rs17655C/G12 ( 42.9%)150 ( 38.2%)1.85 ( 0.75, 4.57)43 ( 25.4%)93 ( 24.7%)1.03 ( 0.65, 1.64) XPG/ERCC5 rs17655G/G7 ( 25.0%)40 ( 10.2%)4.36 ( 1.34,14.22)48 ( 28.4%)95 ( 25.2%)1.32 ( 0.84, 2.10) XPG/ERCC5 rs C/G8 ( 21.1%)108 ( 21.5%)0.94 ( 0.41, 2.17)19 ( 10.6%)57 ( 14.9%)0.65 ( 0.36, 1.16)