Objectives Describe how an acid-base indicator functions. Explain how to carry out an acid-base titration. Calculate the molarity of a solution from titration.

Slides:



Advertisements
Similar presentations
Neutralization Reactions
Advertisements

III. Titration (p. 493 – 503) Ch. 15 & 16 – Acids & Bases.
Aqueous Solutions and the Concept of pH
III. Titration (p ) Ch. 15 & 16 - Acids & Bases.
Friday, May 6th: “A” Day Agenda
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Warm Up Take out your lab and have it ready to turn in. On separate.
Acid-Base Titration and pH
Topic 1.5 Titrations. Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration.
Strong Acid-Base Titrations Chapter 17. Neutralization Reactions Review Generally, when solutions of an acid and a base are combined, the products are.
Chapter 16 pH and Titration
CHAPTER 16: (HOLT) ACID-BASE TITRATION AND pH I. Concentration Units for Acids and Bases A. Chemical Equivalents 1. Definition: quantities of solutes.
Chapter 14 Acids and Bases
Chapter 14 Acids and Bases
Chapter 15 Table of Contents
Acid-Base Titration and pH
Molarity by Dilution Diluting Acids How to Calculate Acids in concentrated form are diluted to the desired concentration using water. Moles of acid before.
Neutralization Reactions
ACIDS AND BASES Acid Base Titration A very accurate method to measure concentration. Acid + Base  Salt + Water H + + OH -  H 2 O Moles H + = Moles.
Neutralization Reaction
19.4 Neutralization Reactions > 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. Chemists use acid-base reactions to determine.
Leave space between each step to add more information. 1.Write a balance chemical equation between the acid and the base. Remember it’s a double replacement.
Chapter #16 Acid-Base Titration and pH. Chapter 16.1 In the self-ionization of water, two water molecules produce a hydronium ion and a hydroxide ion.
Modern Chemistry Chapter 15 Acid-Base Titration & pH
Acids- Base Titration and pH. Aqueous Solutions and the Concept of pH.
Chapter 15 Preview Lesson Starter Objectives
Monday, May 5 th : “A” Day Tuesday, May 6 th : “B” Day Agenda  Homework questions/collect  Sec quiz  Section 15.3: “Neutralizations and Titrations”
Aqueous Solutions and the Concept of pH Chapter 16.
Acid-Base Titration & pH Objectives 1.Describe the self-ionization of water 2.Define pH and give the pH of a neutral solution at 25 o C 3.Explain.
Ch. 15 Titration And pH. Ionization of Water _____________________: two water molecules produce a hydronium ion and a hydroxide ion by transfer of a proton.
Determining pH and Titrations
Molarity, pH, and Stoichiometry of Solutions Chapter 5 part 4.
Indicators and pH Meters
III. Titration (p ) Ch. 16 – Determining pH and Titrations.
Chapter 16 Acid-Base Titration and pH. Aqueous Solutions and the Concept of pH Self-ionization of water – 2 water molecules produce a hydronium ion and.
1 Acid-Base Titration and pH Chapter Self-Ionization of water Two water molecules produce a hydronium ion and a hydroxide ion by transfer of a proton.
C. Johannesson III. Titration Ch. 14 & 15 - Acids & Bases.
Titrations. Standard Solution Sample Solution Burette A titration is a volumetric analysis technique used to find the [unknown] of a sample solution by.
Titrations Chapter 13.
Titration. Definition Process used to determine the strength of an unknown acid or base Can determine the unknown acid by adding to it a base of known.
Acid-Base Reactions and Titrations Chemistry. Examples of Acid-Base Rxns HNO 3 + KOH  H 2 O + KNO 3 H 2 SO NH 4 OH  (NH 4 ) 2 SO H 2 O LiOH.
Chapter 16 pH and Titration. I. Concentration Units for Acids and Bases A. Chemical Equivalents A. Chemical Equivalents 1. Definition: The number of acidic.
Acids and Bases Notes Part 2 Acid Rain Many industrial processes produce gases such as NO, NO 2, CO 2, SO 2, and SO 3. These compounds can dissolve in.
Chapter 15. Section 1  The Ionization Constant of Water (K W )  Water self-ionizes to a small extent to form H 3 O + and OH -  The concentrations.
19.4 Neutralization Reactions. Neutralization During a neutralization reaction, an acid and a base react to produce a salt and water. Salts are ionic.
Acid-Base Titration and pH l Aqueous Solution and the Concept of pH – Hydronium Ions and Hydroxide Ions – The pH Scale – Calculating Involving pH l Determining.
Chapter 15. Acid Any solution with more H 3 O + ions than OH - Electrolytes Taste sour pH less than 7 React with many metals Strong acid-any acid that.
Indicators And Titration. Indicators Usually organic acid or base whose color is sensitive to pH Indicator is weak acid or base In basic solution, indicator.
POINT > Review acid-base neutralization POINT > Identify pH indicators and how they work POINT > Describe titration process.
DO NOW!!! What is the molarity of a 500mL solution that contains 0.29 moles of hydrochloric acid, HCl? 2. What is the pH and pOH of that solution?
WARM UP 1. Write the equation for the neutralization reaction between sulfuric acid (H 2 SO 4 ) and ammonium hydroxide (NH 4 OH).
Fun fun. Acid-Base Reactions. Acid-Base Neutralization  Acids and bases will react with each other to form water and a salt.  Water has a pH of 7—it.
Hydronium Ions and Hydroxide Ions Self-Ionization of Water In the self-ionization of water, two water molecules produce a hydronium ion and a hydroxide.
Acid-Base Titration and pH. Aqueous Solutions and the Concept of pH In the self-ionization of water, two water molecules produce a hydronium ion and a.
Acid-Base Titration & pH
Titration A standard solution is used to determine the concentration of another solution.
Indicators and pH Meters
Acids & Bases Titration.
Acid-Base Titration Titration is a chemical analysis involving the addition of a known concentration of titrant to a known volume but unknown concentration.
Ch. 15 & 16 - Acids & Bases III. Titration (p )
Acids & Bases III. Titration.
Modern Chemistry Chapter 15 Acid-Base Titration & pH
Unit 13 – Acid, Bases, & Salts
Indicators and pH Meters
Ch. 15 & 16 - Acids & Bases III. Titration (p )
Chapter 15 Preview Objectives Indicators and pH Meters Titration
Hydronium Ions and Hydroxide Ions
Titrations.
Ch. 15 & 16 - Acids & Bases III. Titration (p )
Determining the pH and Titrations
Ch. 15 & 16 - Acids & Bases III. Titration (p )
Presentation transcript:

Objectives Describe how an acid-base indicator functions. Explain how to carry out an acid-base titration. Calculate the molarity of a solution from titration data. Chapter 15 Section 2 Determining pH and Titrations

Indicators and pH Meters Acid-base indicators are compounds whose colors are sensitive to pH. Indicators change colors because they are either weak acids or weak bases. Chapter 15 Section 2 Determining pH and Titrations H In and In  are different colors. In acidic solutions, most of the indicator is H In In basic solutions, most of the indicator is In –

Indicators and pH Meters The pH range over which an indicator changes color is called its transition interval. Indicators that change color at pH lower than 7 are stronger acids than the other types of indicators. They tend to ionize more than the others. Indicators that undergo transition in the higher pH range are weaker acids. Chapter 15 Section 2 Determining pH and Titrations

Indicators and pH Meters A pH meter determines the pH of a solution by measuring the voltage between the two electrodes that are placed in the solution. The voltage changes as the hydronium ion concentration in the solution changes. Measures pH more precisely than indicators Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Titration Neutralization occurs when hydronium ions and hydroxide ions are supplied in equal numbers by reactants. H 3 O + ( aq ) + OH  ( aq ) 2H 2 O( l ) Chapter 15 Section 2 Determining pH and Titrations Titration is the controlled addition and measurement of the amount of a solution of known concentration required to react completely with a measured amount of a solution of unknown concentration.

Titration, continued Equivalence Point The point at which the two solutions used in a titration are present in chemically equivalent amounts is the equivalence point. The point in a titration at which an indicator changes color is called the end point of the indicator. Chapter 15 Section 2 Determining pH and Titrations

Titration, continued Equivalence Point, continued Indicators that undergo transition at about pH 7 are used to determine the equivalence point of strong- acid/strong base titrations. The neutralization of strong acids with strong bases produces a salt solution with a pH of 7. Chapter 15 Section 2 Determining pH and Titrations

Titration, continued Equivalence Point, continued Indicators that change color at pH lower than 7 are used to determine the equivalence point of strong- acid/weak-base titrations. The equivalence point of a strong-acid/weak-base titration is acidic. Chapter 15 Section 2 Determining pH and Titrations

Titration, continued Equivalence Point, continued Indicators that change color at pH higher than 7 are used to determine the equivalence point of weak- acid/strong-base titrations. The equivalence point of a weak-acid/strong-base titration is basic. Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Molarity and Titration The solution that contains the precisely known concentration of a solute is known as a standard solution. A primary standard is a highly purified solid compound used to check the concentration of the known solution in a titration The standard solution can be used to determine the molarity of another solution by titration. Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Chapter 15 Section 2 Determining pH and Titrations

Molarity and Titration, continued To determine the molarity of an acidic solution, 10 mL HCl, by titration 1.Titrate acid with a standard base solution mL of 5.0  10  3 M NaOH was titrated 2.Write the balanced neutralization reaction equation. HCl( aq ) + NaOH( aq ) NaCl( aq ) + H 2 O( l ) Chapter 15 Section 2 Determining pH and Titrations 1 mol 1 mol 3.Determine the chemically equivalent amounts of HCl and NaOH.

Molarity and Titration, continued 4.Calculate the number of moles of NaOH used in the titration mL of 5.0  10  3 M NaOH is needed to reach the end point Chapter 15 Section 2 Determining pH and Titrations 5.amount of HCl = mol NaOH = 1.0  10  4 mol 6.Calculate the molarity of the HCl solution

Molarity and Titration, continued 1.Start with the balanced equation for the neutralization reaction, and determine the chemically equivalent amounts of the acid and base. 2. Determine the moles of acid (or base) from the known solution used during the titration. 3.Determine the moles of solute of the unknown solution used during the titration. 4. Determine the molarity of the unknown solution. Chapter 15 Section 2 Determining pH and Titrations

Molarity and Titration, continued Sample Problem F In a titration, 27.4 mL of M Ba(OH) 2 is added to a 20.0 mL sample of HCl solution of unknown concentration until the equivalence point is reached. What is the molarity of the acid solution? Chapter 15 Section 2 Determining pH and Titrations

Molarity and Titration, continued Ba(OH) 2 + 2HCl BaCl 2 + 2H 2 O 1 mol 2 mol Chapter 15 Section 2 Determining pH and Titrations Sample Problem F Solution Given: volume and concentration of known solution = 27.4 mL of M Ba(OH) 2 Unknown: molarity of acid solution Solution: 1.balanced neutralization equation chemically equivalent amounts

Molarity and Titration, continued Sample Problem F Solution, continued 2. volume of known basic solution used (mL) amount of base used (mol) Chapter 15 Section 2 Determining pH and Titrations 3. mole ratio, moles of base used moles of acid used from unknown solution

Molarity and Titration, continued Sample Problem F Solution, continued 4. volume of unknown, moles of solute in unknown molarity of unknown Chapter 15 Section 2 Determining pH and Titrations

Molarity and Titration, continued Sample Problem F Solution, continued 1.1 mol Ba(OH) 2 for every 2 mol HCl. Chapter 15 Section 2 Determining pH and Titrations 2. 3.

Molarity and Titration, continued Sample Problem F Solution, continued Chapter 15 Section 2 Determining pH and Titrations 4.