CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,

Slides:



Advertisements
Similar presentations
Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
Advertisements

MDT-ASD PRR C. Posch30-Aug-02 1 Specifications, Design and Performance   Specifications Functional Analog   Architecture Analog channel Programmable.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
August SGSS front end, Summary August 2008 Edwin Spencer, SCIPP1 SGST Preview SCIPP, UC Santa Cruz Andrey Martchovsky Gregory Horn Edwin Spencer.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
TOF at 10ps with SiGe BJT Amplifiers
1 SciFi electronics meeting – CERN– June 20 th 2011 Some ideas about a FE for a SciFi tracker based on SiPM A. Comerma, D. Gascón Universitat de Barcelona.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
Preliminary LumiCAL FEE Specification Presented by Alexander Solin NC PHEP FCAL collaboration meeting, February 12-13, 2006, Krakow (INP PAS),
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
A Study of Time over Threshold (TOT) Technique for Plastic Scintillator Counter 高能物理研究所 吴金杰.
A. Rivetti Gigatracker meeting, dec 2009 Charge measurement with the TDC per pixel architecture A. Rivetti, G. Dellacasa S. Garbolino, F. Marchetto, G.
Building blocks 0.18 µm XFAB SOI Calice Meeting - Argonne 2014 CALIIMAX-HEP 18/03/2014 Jean-Baptiste Cizel - Calice meeting Argonne 1.
Front End Circuit.. CZT FRONT END ELECTRONICS INTERFACE CZTASIC FRONT END ELECTRONICS TO PROCESSING ELECTRONICS -500 V BIAS+/-2V +/-15V I/O signal.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Design & Development of an Integrated Readout System for Triple-GEM Detectors Alessandro PEZZOTTA III Year PhD Seminar, Cycle XXVIII 22 September 2015.
Peter, Wieczorek - EE Low Noise Charge Sensitive Preamplifier Development for the PANDA Calorimeter Design and Measurements of the APFEL - Chip.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Analog Building Blocks for P326 Gigatracker Front-End Electronics
NA62 Gigatracker Working Group Meeting 23 March 2010 Massimiliano Fiorini CERN.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
1 New TOT design for the LAV F.E. electronics M. Raggi, P. Valente G. Corradi, D. Tagnani LNF electronic service TDAQ Working Group 29/05/2009.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
A. Rivetti Villa Olmo, 7/10/2009 Lepix: monolithic detectors for particle tracking in standard very deep submicron CMOS technologies. A. RIVETTI I.N.F.N.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
SIAM M. Despeisse / 29 th January Toward a Gigatracker Front-end - Performance of the NINO LCO and HCO Matthieu Despeisse F. Osmic, S. Tiuraniemi,
Status of the n-XYTER testing Knut Solvag, Gerd Modzel, Christian Schmidt, Markus Höhl, Andrea Brogna, Ullrich Trunk, Hans-Kristian Soltveit CBM.
LHCb Vertex Detector and Beetle Chip
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
CBM-TOF-FEE Jochen Frühauf, GSI Picosecond-TDC-Meeting.
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
M. Atef, Hong Chen, and H. Zimmermann Vienna University of Technology
Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.
High Gain Transimpedance Amplifier with Current Mirror Load By: Mohamed Atef Electrical Engineering Department Assiut University Assiut, Egypt.
2013 核电子学 ASIC 技术研讨会, 2013/10/14 基于电流模的 MRPC 探测器读出 ASIC 研究 报告人:周新 指导老师:邓智.
Page Detector and Electronics R&D for picosecond resolution, single photon detection and imaging J.S. MilnesPhotek Ltd T.M. ConneelyUniversity.
A Low-noise Front-end ASIC design based on TOT technique for Read-out of Micro-Pattern Gas Detectors Huaishen Li, Na Wang, Wei Lai, Xiaoshan Jiang 1 State.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Hugo Furtado CERN - Microelectronics Group 11th Workshop on Electronics for LHC and future Experiments Delay25, an ASIC for timing adjustment in LHC Delay25.
End OF Column Circuits – Design Review
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
KLOE II Inner Tracker FEE
A General Purpose Charge Readout Chip for TPC Applications
Results achieved so far to improve the RPC rate capability
CTA-LST meeting February 2015
Functional diagram of the ASD
TDC at OMEGA I will talk about SPACIROC asic
A Fast Binary Front - End using a Novel Current-Mode Technique
Status of n-XYTER read-out chain at GSI
X. Zhu1, 3, Z. Deng1, 3, A. Lan2, X. Sun2, Y. Liu1, 3, Y. Shao2
BESIII EMC electronics
Status of the CARIOCA project
RPC Front End Electronics
1INFN Sez. Bari, 2Università degli Studi di Bari “A. Moro”
Readout Electronics for Pixel Sensors
Readout Electronics for Pixel Sensors
Presentation transcript:

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi, M. Despeisse, S. Tiuraniemi, S. Poundjou

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Architecture of the front end Best timing performance done with a fast shaping –Minimize time walk –Minimize jitter if noise not too high Feasible with small input capacitance 300 fF The challenge is to find the best configuration –NINO configuration used for ALICE TOF Scaled down to match 300fF input C Following by a discriminator stage –Pulse width encodes the input charge –Efficient for time walk correction, like TOT

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Nino 0.25  m for ALICE TOF Design and test results

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting NINO electronic readout Developed for the Time Of Flight (TOF) detector of ALICE experiment Readout of Multigap Resistive Plate Chambers (MRPC) - Differential input (differential signal provided by MRPC) - Optimized to operate with 10 pF input capacitance - Amplifier with ~ 1 ns peaking time - Threshold adjustable in the range fC Picture of NINO ASIC Chip is 2 × 4 mm channels per chip Implemented in a 0.25  m CMOS technology - Low power consumption (40 mW/channel) - Time resolution measured down to ~ 5ps rms

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Measurement set up Pulse generator : 0.8 ns or 1.6 ns leading edge Electrical characterization w. pulse generator : Differential or single ended mode Differential input Single ended mode I in + Q = C ×  V For  V = 10 mV : Q = 10 fC 100 mV 100 fC I in - Differential probe + - Differential output readout : NINO

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Simulation Simulation of Electrical characterization w. pulse generator : single ended mode Voltage rising edge, 0.8 ns or 1.6 ns, 20 mV or 100 mV NINO output Pulse width varies w. input charge and input current shape Time walk varies w. input charge Time walk varies w. input current shape 0.8 ns rising edge 1.6 ns rising edge

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Electrical characterization Electrical characterization w. pulse generator : single ended mode Voltage rising edge of 0.8 ns or 1.6 ns Threshold : 30 mV Rising edge : 0.8 ns / 100 mV Input Charge : 100 fC Differential output : 500 mV level Superposition of 5000 signals Trigger from pulse generator Diff. Output Pulse width Time walk Time jitter Characterization of : - Pulse width - Incertitude on pulse width - Time walk - Time jitter

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Electrical characterization Threshold at 45 mV – 0.8 ns rising edge Average of 456 signals Pulse width variations ns rising edge 1.6 ns rising edge Resolution is varied by the threshold value T and by the current signal shape 1 ns peaking time

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Electrical characterization Time walk 0.8 ns rising edge 1.6 ns rising edge 0.8 ns rising edge 1.6 ns rising edge Measurements for T = 30 mV, 45 mV, 60 mV and 75 mV Time walk correction can be done by measuring pulse width

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Electrical characterization Time jitter 0.8 ns rising edge 1.6 ns rising edge 20 ps Jitter varies w. input charge, threshold and w. input current shape: Faster is the signal lower is the time jitter T = 45 mV

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Nino 0.13  m for P326 Design and simulation results

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Input circuit configuration Common gate differential input stage

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Overall circuit block diagram Ultra fast circuit based on cascaded stages –Entirely differential from input to output

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Main characteristics of the front end Total time walk : 0.75 ns-1ns fast in; 1ns-1.5 ns, slow in Time walk variation 2-10 fC: 250 ps/fast in, 500ps /slow in Jitter calculated: 80ps rms, signal 10 4 e-, rise time 1 ns Rise time of the input amplifier: 1ns ENC for fast input (400ps) – 600 e- rms ENC for slow input, planar silicon operating at Vsat – 700 e- rms Power consumption is – ~ 300 µW 1.2 V DD Supply current – 250 µA Drain current of each input branch – 15 µA Drain current of each differential stage – 15 µA There are 5 differential stage and one driver.

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Output, walk for fast detector Charges input 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 fC, Walk 0.75 ns -1 ns for 2 to 10 fC Pulse width encodes input charge ns

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Output and walk for slow detector Charges input 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 fC, Walk 1 to 1.5 ns for 2 to 10 fC Pulse width encodes input charge ns

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Preamplifier and post stages Preamplifier –So far there is no preamplifier Lack of time –First understand if the discriminator stage itself is sensitive enough for MIP Digital post stages –Gate delay digital filter signals with pulse width Help to decrease threshold Can be used to correct time walk

CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting News 130 nm Submission with Turin 27 November External users interested with Gigatracker technology – Time resolved X-ray fluorescence spectroscopy ESRF, DESY, SPRING8 Pixel APD technology for ultra fast X-ray detection –Discussion under way to understand how to profit from this interest A junior fellow has been asked to PH for P326 electronics