1 Single spin asymmetries of forward neutron production in polarized p+p and p+A collisions at √s=200 GeV Kiyoshi Tanida (Japan Atomic Energy Agency) April.

Slides:



Advertisements
Similar presentations
Overview of spin physics results from PHENIX experiment The 4th International Workshop of High Energy Physics in the LHC Era Valparaiso, Chile January.
Advertisements

Commissioning the PHENIX RPC Forward Trigger Upgrade Michael Daugherity Abilene Christian University for the PHENIX Collaboration.
Columbia University Christine Aidala December 2003 Solving the Proton Spin Crisis My Work (and Life!) as a Graduate Student on the Experiment.
Measurement of J/  Production in Proton  Proton Collisions by the PHENIX Experiment Nichelle Bruner University of New Mexico for the PHENIX Collaboration.
1 Measurement of the single transverse- spin asymmetry of forward neutrons in p-p collisions at RHIC-PHENIX Manabu Togawa for the PHENIX collaboration.
K. Barish Kenneth N. Barish UC Riverside Teachers Academy June 26, 2012 What makes up the spin of the proton? Search for strange quark matter.
Studies on nucleon spin at PHENIX 3 rd International Conference on New Frontiers in Physics Kolymbari, Greece August 2, 2014 Kiyoshi Tanida (Seoul National.
PHENIX Spin Program Recent results A.Bazilevsky Brookhaven National Laboratory for the PHENIX Collaboration XXXXth Rencontres de Moriond - March 12-19,
PHENIX Status and Recent Results Status and Recent Results Matthias Grosse Perdekamp, UIUC and RBRC PHENIX status and run 2003 performance High sensitivity.
Recent Results on PHENIX Longitudinal Asymmetry Measurements RIKEN/RBRC Itaru Nakagawa 1.
Recent Open Heavy Flavor Results from PHENIX J. Matthew Durham for the PHENIX Collaboration Stony Brook University
PHENIX Highlights Takao Sakaguchi Brookhaven National Laboratory for the PHENIX Collaboration.
Marzia Rosati - ISU1 Marzia Rosati Iowa State University.
Comprehensive study of heavy quark production by PHENIX at RHIC Youngil Kwon Univ. of Tennessee For the collaboration 21st Winter Workshop on Nuclear Dynamics.
Event anisotropy of identified  0,  and e compared to charged , K, p, and d in  s NN = 200 GeV Au+Au at PHENIX Masashi Kaneta for the PHENIX collaboration.
PHENIX Direct Photons in 200 GeV p+p and Au+Au Collisions: Probing Hard Scattering Production Justin Frantz Columbia University for the PHENIX Collaboration.
Коллаборация LHE JINRNagoya Univ.Miyazaki Univ. Цель Изучение структуры дейтрона на малых растояниях (посмотреть как выглядит дейтрон изнутри) Дейтрон.
T.C.Awes, ORNL Centrality Dependence of  0 Production in d+Au Collisions T.C. Awes, ORNL For the PHENIX Experiment Fall DNP Tucson, AZ, October 30, 2003.
Sasha Milov Focus on Multiplicity Bari June 17, dN ch /dη and dE T /dη at Mid-Rapidity from SIS to LHC Alexander Milov for the PHENIX collaboration.
High p T   and Direct  Production T.C. Awes, ORNL International Workshop on RHIC and LHC Detectors Delphi, Greece, June 9, 2003.
Quark Gluon Plasmas Saturday Physics Series University of Colorado at Boulder March 19, 2005 Professor Jamie Nagle Department of Physics.
Two- and three-particle Bose-Einstein correlations M. Csanád for the PHENIX Collaboration.
Recent Results from PHENIX: High pT hadron Suppression
1 PHENIX Beam Use Proposal for Runs 9-13 Barbara Jacak for the PHENIX Collaboration Status of PHENIX & our science Beam Use Proposal Summary Spin Goals.
1 Beam Use Proposal for Runs 7 and Beyond Barbara Jacak for the PHENIX Collaboration Deputy Spokespersons: Yasuyuki Akiba Matthias Grosse-Perdekamp Richard.
21st Winter Workshop on Nuclear Dynamics Andrew Glenn University of Colorado R cp Measurements Using the PHENIX Muon Arms for √s NN =200 GeV d+Au Collisions.
J/  Production and Nuclear Effects for d+Au and p+p Collisions in PHENIX Raphaël Granier de Cassagnac LLR – Ecole polytechnique, France for the PHENIX.
PHENIX Local Polarimeter PSTP 2007 at BNL September 11, 2007 Yuji Goto (RIKEN/RBRC)
Collaboration LHE JINRNagoya Univ.Miyazaki Univ. PURPOSE Study deuteron structure at short distances (to see how deuteron looks like inside) Deuteron --
 /K/p production and Cronin effect from p+p, d+Au and Au+Au at  s NN =200 GeV from the PHENIX experiment Felix Matathias for the collaboration The Seventeenth.
PHENIX Results on J/  and  ’ from d+Au Collisions Xiaochun He, Georgia State University For The PHENIX Collaboration Brief Introduction PHENIX Results.
Latest results of nucleon spin structure measurements from PHENIX RIKEN/RBRC Itaru Nakagawa 1.
Proton-Proton Elastic Scattering at RHIC
J/ Measurements in √s NN =200 GeV Au+Au Collisions Andrew Glenn University of Colorado for the PHENIX collaboration October 27, 2006 DNP 2006.
Marzia Rosati - ISU1 Marzia Rosati Iowa State University Hard Probes 2004 Ericeira, Portugal November 5, 2004 l+l+ l-l- J 
The PHENIX experiment for the RHIC Commissioning Run Achim Franz, BNL Session BE 05 - Ultrarelativistic.
Single transverse-spin asymmetry of very forward neutron production in polarized pp collisions at PHENIX WWND2012 in Puerto Rico April 12 th, 2012 Yuji.
JPS fall Meeting at Kochi University September 29, 2004 Radial Flow Study via Identified Hadron Spectra in Au+Au collisions Akio Kiyomichi (RIKEN) for.
Charm Production In AuAu, dAu and pp Reactions from the PHENIX Experiment at RHIC Sean Kelly - University of Colorado for the PHENIX collaboration.
Centrality Dependence of  0 Production in Au+Au Collisions at = 62.4 GeV Stefan Bathe (UCR) for the PHENIX collaboration DNP Fall Meeting, October 2004.
Spin physics at PHENIX Outline The goals of spin physics at PHENIX PHENIX experiment Past: summary of the first run Present: status of the ongoing run.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
1. 2 Outline:  Motivation.  QGP Search at RHIC  Charm scenario  PHENIX experiment at RHIC  Open charm  Methods  Results  J/Ψ Measurements  Methods.
J/  Production and Nuclear Effects for d+Au and p+p Collisions in PHENIX Raphaël Granier de Cassagnac LLR – Ecole polytechnique, France for the PHENIX.
Event anisotropy of identified  0,  and e compared to charged , K, p, and d in  s NN =200 GeV Au+Au at PHENIX Masashi Kaneta for the PHENIX collaboration.
Measurement of Elliptic Flow for High pT charged hadron at RHIC-PHENIX Maya SHIMOMURA University of Tsukuba for the PHENIX Collaboration Collaborations.
J/  measurements at RHIC/PHENIX David Silvermyr, ORNL for the PHENIX collaboration.
K. Barish Kenneth N. Barish ( for Kinichi Nakano) for the PHENIX Collaboration CIPANP 2009 San Diego, CA May 2009 Measurement of  G at RHIC PHENIX.
Physics Results by the Vanderbilt Group From the PHENIX Experiment The Hunt for the Quark Gluon Plasma (for more information visit
T.C.Awes Direct Photons in Relativistic Heavy Ion Collisions T.C. Awes, ORNL Workshop on QCD, Confinement, and Heavy Ion Reactions Tucson, AZ, October.
Company Logo PHENIX Charmonium Measurement in p+p, d+Au, Au+Au and Cu+Cu collisions Taku Gunji CNS, University of Tokyo For the PHENIX Collaboration Heavy.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Proton Polarimetry Proton polarimeter reactions RHIC polarimeters.
1 Heavy quark measurements in the PHENIX experiment at RHIC Hugo Pereira CEA Saclay, for the PHENIX collaboration Strangeness in Quark Matter 2004 Cape.
Ralf Averbeck State University of New York at Stony Brook for the Collaboration DPG Spring Meeting Cologne, Germany, March 8-12, 2004 Heavy-flavor measurements.
Low mass dilepton production at RHIC energies K. Ozawa for the PHENIX collaboration.
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
BNL Minjung Kim for the PHENIX Collaboration (SNU/RIKEN) RBRC Workshop: Emerging Spin and Transverse Momentum Effects in p+p and p+A Collisions.
The First Transverse Single Spin Measurement in High Energy Polarized Proton-Nucleus Collision at the PHENIX experiment at RHIC RIKEN/RBRC Itaru Nakagawa.
First Results from the experiment at RHIC, part 1 Achim Franz.
1 Single spin asymmetry of forward neutron at PHENIX. 2005/06/02 RBRC workshop "Single-Spin Asymmetries" Manabu Togawa Kyoto-University, RIKEN.
« Heavy Flavor production in PHENIX», Hard Probes 2004, Nov. 6 1 Heavy Flavor Production in PHENIX O. Drapier LLR-École Polytechnique, France for.
(RHICにおける) 最前方中性子の非対称度測定
Systematic Study of Elliptic Flow at RHIC-PHENIX Maya SHIMOMURA for the PHENIX Collaborations University of Tsukuba September 11, DIFFRACTION 2008.
Spin and Cosmology Physics Opportunity Using RHICf Korea-Japan PHENIX collaboration meeting 2015 년 10 월 19 일 타니다 키요시 (JAEA/ 서울대 )
Masashi Kaneta for the PHENIX collaboration
Univ. of Tsukuba, ShinIchi Esumi
RHIC-PHENIX実験における荷電ハドロン楕円フローの系統的研究
Transverse Spin Physics at PHENIX
Current status of RHIC Spin Program
Heavy Flavor and Strangeness at the PHENIX Experiment
Presentation transcript:

1 Single spin asymmetries of forward neutron production in polarized p+p and p+A collisions at √s=200 GeV Kiyoshi Tanida (Japan Atomic Energy Agency) April 12, 2016

2 Introduction Very forward neutron production in pp collision high-energy, yet pQCD is useless (pT < 0.1 GeV/c) Mechanism? Regge theory? –Pion exchange? –Pomeron exchange & decay? –Other reggeons? ±3 mrad D x magnet p p

3 Forward n cross section E.g.: N. N. Nikolaev et al., PRD 60, (1999) OPE models seem OK. How about A N ? (x F )   a 2 pnpn BG

4 How A N is produced? Need both helicity flip & non-flip amplitudes In Regge theory –Pion exchange gives spin flip –Non flip? Other reggeons? Sensitive to mechanism p p    … n ↑

5 Past PHENIX result Inclusive neutron

6 Comparison with model Pion-a 1 interference –Good agreement with data Interference btw spin flip/non-flip  small amplitude can make big difference Kopeliovich et al., PRD 84 (2011)

7 100GeV Au, Al Run15 (2015) Porarized Proton 100GeV/nucleon What’s new

8 PHENIX Experiment Pioneering High Energy Nuclear Interaction EXperiment

9 13 Countries; 70 Institutions Abilene Christian University, Abilene, TX 79699, U.S. Baruch College, CUNY, New York City, NY , U.S. Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY , U.S. Physics Department, Brookhaven National Laboratory, Upton, NY , U.S. University of California - Riverside, Riverside, CA 92521, U.S. University of Colorado, Boulder, CO 80309, U.S. Columbia University, New York, NY and Nevis Laboratories, Irvington, NY 10533, U.S. Florida Institute of Technology, Melbourne, FL 32901, U.S. Florida State University, Tallahassee, FL 32306, U.S. Georgia State University, Atlanta, GA 30303, U.S. University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S. Iowa State University, Ames, IA 50011, U.S. Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S. University of Maryland, College Park, MD 20742, U.S. Department of Physics, University of Massachusetts, Amherst, MA , U.S. Morgan State University, Baltimore, MD 21251, U.S. Muhlenberg College, Allentown, PA , U.S. University of New Mexico, Albuquerque, NM 87131, U.S. New Mexico State University, Las Cruces, NM 88003, U.S. Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S. Department of Physics and Astronomy, Ohio University, Athens, OH 45701, U.S. RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY , U.S. Chemistry Department, Stony Brook University,SUNY, Stony Brook, NY , U.S. Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, NY 11794, U.S. University of Tennessee, Knoxville, TN 37996, U.S. Vanderbilt University, Nashville, TN 37235, U.S. Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP , Brazil Institute of Physics, Academia Sinica, Taipei 11529, Taiwan China Institute of Atomic Energy (CIAE), Beijing, People's Republic of China Peking University, Beijing, People's Republic of China Charles University, Ovocnytrh 5, Praha 1, , Prague, Czech Republic Czech Technical University, Zikova 4, Prague 6, Czech Republic Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague 8, Czech Republic Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI Jyväskylä, Finland Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France Laboratoire de Physique Corpusculaire (LPC), Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, Aubiere Cedex, France IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary ELTE, Eötvös Loránd University, H Budapest, Pázmány P. s. 1/A, Hungary KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences (MTA KFKI RMKI), H-1525 Budapest 114, POBox 49, Budapest, Hungary Department of Physics, Banaras Hindu University, Varanasi , India Bhabha Atomic Research Centre, Bombay , India Weizmann Institute, Rehovot 76100, Israel Center for Nuclear Study, Graduate School of Science, University of Tokyo, Hongo, Bunkyo, Tokyo , Japan Hiroshima University, Kagamiyama, Higashi-Hiroshima , Japan KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki , Japan Kyoto University, Kyoto , Japan Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki , Japan RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama , Japan Physics Department, Rikkyo University, Nishi-Ikebukuro, Toshima, Tokyo , Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo , Japan Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan Chonbuk National University, Jeonju, Korea Ewha Womans University, Seoul , Korea Hanyang University, Seoul , Korea KAERI, Cyclotron Application Laboratory, Seoul, South Korea Korea University, Seoul, , Korea Myongji University, Yongin, Kyonggido , Korea Department of Physocs and Astronomy, Seoul National University, Seoul, South Korea Yonsei University, IPAP, Seoul , Korea IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, , Russia INR_RAS, Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow , Russia Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia Russian Research Center "Kurchatov Institute", Moscow, Russia PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, , Russia Saint Petersburg State Polytechnic University, St. Petersburg, Russia Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Vorob'evy Gory, Moscow , Russia Department of Physics, Lund University, Box 118, SE Lund, Sweden Feb 2011

10 ZDC ~ 1800cm 10cm ±3 mrad D x magnet blue beamyellow beam BBC ZDC 3 modules: 150X 0 5.1λ I Forward counter SMD 1 ZDC SMD position measurement with scintillators 5.1λ T 149X 0 (3 ZDCs),  E/E~ 100GeV

11 September 17, nd ZDC module SMD Shower Maximum Detector Arrays of plastic scintillators Position given as shower center –position resolution 50GeV neutron x: segmented by 7 y: segmented by Hadron shower (mm)

12 BBC Quartz Cherenkov counter 2 identical parts (BBC-north and -south) 64 segments each. Trigger on associated particles NorthSouth cm ⊿ φ = 2π

13 Result Surprise ― huge dependence on A –Even sign changes Simple  -a 1 interference predicts small dependence Mechanism? Why? # of proton# of neutron p10 Al1314 Au

14 Even more – BBC tagging A N does change with BBC tagging –Hint for mechanism n p A  ↑ Both BBC veto p A  ↑ n Both BBC Fired BBC

15 Speculation A N is still negative with BBC hits –Or, large positive A N is seen only when there is no hit BBC p & A are not (badly) broken  Diffraction? – common to pp Ultra-Peripheral Collision? BBC UPC Monte-Carlo for n+  +  Small chance of detection in BBC

16 Coulomb-Nuclear Interference p A    A      P  n  * exchange and Reggeon exchange can interfere  may give positive A N  amplitude is proportional to Z  significant for large Z p A    a 1, … n  ↑ This gives negative A N, and those two do not interfere

17 Todos – for further studies Cross section –Matches with UPC estimation? –Small p T behavior? Sign of A N –Can  */Reggeon interference produce positive A N ? Any other mechanism? –We are discussing with theorists –Your inputs are welcome!

18 Summary & Perspective Single spin asymmetry of forward n –The first measurement with (transversely) polarized proton with nuclei (Al and Au), in addition to p+p data. Surprising behavior of A N with A –Inclusive A N (pAu) ~  3xA N (pp); opposite sign –Rather small dependence with BBC tagging Mechanism? –Hint from BBC tagging –We are suspecting contribution of Ultra-Peripheral collisions –To be quantitative? Other mechanisms? We are discussing with theorists Your inputs are welcome!

19 Backup slides

20 Why spin phenomena? Let’s take single spin asymmetry A N for example: –Left-right asymmetry (forward = beam direction, up = spin direction) Interference of helicity flip & non-flip amplitudes x F <0 x F >0 R L Left Right Sensitive to mechanism!

21 The Relativistic Heavy Ion Collider accelerator complex at Brookhaven National Laboratory PHENIX STAR Brhams pp2pp

22 RHIC p+p accelerator complex BRAHMS & PP2PP STAR PHENIX AGS LINAC BOOSTER Pol. Proton Source Spin Rotators 20% Snake Siberian Snakes 200 MeV polarimeter Rf Dipoles RHIC pC “CNI” polarimeters PHOBOS RHIC absolute pH polarimeter Siberian Snakes AGS pC “CNI” polarimeter 5% Snake Coulomb-Nuclear Interference

23 Even more – BBC tagging A N does change with BBC tagging –Hint for mechanism p A  ↑ n n p A  ↑ A-going veto p-going veto n p A  ↑ Both BBC veto BBC p A  ↑ n Both BBC Fired BBC