Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Kyoto Univ.) Collaboration with Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto.

Slides:



Advertisements
Similar presentations
An introduction to the physics of the interstellar medium I. Overview II. Thermal processes in the ISM III. Hydrodynamics in the ISM IV. Gravity in the.
Advertisements

Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
The Thermostat Problem Rok Roskar Nick Cowan December 9 th 2004 Rok Roskar Nick Cowan December 9 th 2004.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Properties of the Structures formed by Parker-Jeans Instability Y.M. Seo 1, S.S. Hong 1, S.M. Lee 2 and J. Kim 3 1 ASTRONOMY, SEOUL NATIONAL UNIVERSITY.
AS 4002 Star Formation & Plasma Astrophysics MOLECULAR CLOUDS Giant molecular clouds – CO emission –several tens of pc across –mass range 10 5 to 3x10.
Douglas Lin Dept of Astronomy & Astrophysics, Univ California, Santa Cruz Kavli Institute for Astronomy & Astrophysics, Peking University in collaboration.
Heating and Cooling 10 March 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
Dynamical Stability of the Intracluster Medium: Buoyancy Instabilities and Nanoastrophysics Matthew Kunz Alexander Schekochihin Schekochihin et al. 2005,
2. 1 Yes, signal! Physical Properties of diffuse HI gas in the Galaxy from the Arecibo Millennium Survey T. H. Troland Physics & Astronomy Department.
Molecular Tracers of Turbulent Shocks in Molecular Clouds Andy Pon, Doug Johnstone, Michael J. Kaufman ApJ, submitted May 2011.
Einstein Fellows Symposium 10/27/ Orly Gnat, Caltech In Collaboration with : Amiel Sternberg, Chris McKee.
Multidimensional Models of Magnetically Regulated Star Formation Shantanu Basu University of Western Ontario Collaborators: Glenn E. Ciolek (RPI), Takahiro.
What Shapes the Structure of MCs: Turbulence of Gravity? Alexei Krtisuk Laboratory for Computational Astrophysics University of California, San Diego CCAT.
INfluence of turbulence on extinction in various environments Huirong Yan KIAA-PKU Collaboration: H. Hirashita, A. Lazarian, T. Nazowa, T. Kazasa.
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology Craig Booth Tom Theuns & Takashi Okamoto.
An introduction to the Physics of the Interstellar Medium III. Gravity in the ISM Patrick Hennebelle.
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Shock Waves: II. HII Regions + Planetary Nebulae.
Jonathan Slavin Harvard-Smithsonian CfA
Thermal Instability and Turbulence in the ISM Alexei Kritsuk CASS/UCSD.
Modelling Dwarf Galaxies with a Multi-Phase ISM Stefan Harfst 1,2 with: Ch. Theis 3,2 and G. Hensler 3,2 G. Hensler 3,2 1 Rochester Institute of Technology,
An introduction to the physics of the interstellar medium III. Hydrodynamics in the ISM Patrick Hennebelle.
Cosmic Rays and Thermal Instability T. W. Hartquist, A. Y. Wagner, S. A. E. G. Falle, J. M. Pittard, S. Van Loo.
Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Nagoya Univ) Thanks to Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto Univ.) Patrick.
Molecular clouds and gamma rays
Processes in Protoplanetary Disks Phil Armitage Colorado.
The Energy Balance of Clumps and Cores in Molecular Clouds Sami Dib Sami Dib CRyA-UNAM CRyA-UNAM Enrique Vázquez-Semadeni (CRyA-UNAM) Jongsoo Kim (KAO-Korea)
1 Enrique Vázquez-Semadeni Adriana Gazol CRyA UNAM, México Collaborators: Thierry Passot (OCA) Jongsoo Kim (KASI) Dongsu Ryu (Chungnam U.) Ricardo González.
Interaction among cosmic Rays, waves and large scale turbulence Interaction among cosmic Rays, waves and large scale turbulence Huirong Yan Kavli Institute.
ASCI/Alliances Center for Astrophysical Thermonuclear Flashes Evaporation of Clouds in Thermally Conducting, Radiative Supernova Remnants S. Orlando (1),
1 Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México.
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
AS 4002 Star Formation & Plasma Astrophysics Supercritical clouds Rapid contraction. Fragmentation into subregions –Also supercritical if size R ≥ clump.
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
1 Direct Evidence for Two-Fluid Effects in Molecular Clouds Chad Meyer, Dinshaw Balsara & David Tilley University of Notre Dame.
Mass loss and Alfvén waves in cool supergiant stars Aline A. Vidotto & Vera Jatenco-Pereira Universidade de São Paulo Instituto de Astronomia, Geofísica.
Structure and Stability of Phase Transition Layers in the Interstellar Medium Tsuyoshi Inoue, Shu-ichiro Inutsuka & Hiroshi Koyama 1 12 Kyoto Univ. Kobe.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Core Formation due to Magnetic Fields, Ambipolar Diffusion, and Turbulence Shantanu Basu The University of Western Ontario Collaborators: Glenn Ciolek.
Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Numerical simulations of the SN driven ISM Axel Brandenburg (NORDITA, Copenhagen, Denmark) Boris Gudiksen (Stockholm Observatory, Sweden) Graeme Sarson.
MHD in weakly-ionised media Mark Wardle Macquarie University Sydney, Australia.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
Roles of Cosmic Rays in Galaxy Clusters Yutaka Fujita (Osaka U)
Minimum Numerical Viscosity to Care the Carbuncle Instability Tomoyuki Hanawa (Chiba U.) Collaborators: Hayato Mikami, Tomoaki Matsumoto before after.
The Power Spectra and Point Distribution Functions of Density Fields in Isothermal, HD Turbulent Flows Korea Astronomy and Space Science Institute Jongsoo.
Statistical Properties (PS, PDF) of Density Fields in Isothermal Hydrodynamic Turbulent Flows Jongsoo Kim Korea Astronomy and Space Science Institute Collaborators:
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
Magnetic Fields and Protostellar Cores Shantanu Basu University of Western Ontario YLU Meeting, La Thuile, Italy, March 24, 2004.
Shock heating by Fast/Slow MHD waves along plasma loops
RMHD simulations of the non-resonant streaming instability near relativistic magnetized shocks Fabien Casse AstroParticule & Cosmologie (APC) - Université.
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
A resolution of the magnetic braking catastrophe during the second collapse cc2yso UWO, May 17, 2010 – Wolf Dapp Wolf B. Dapp & Shantanu Basu.
AS 4002 Star Formation & Plasma Astrophysics Supersonic turbulence? If CO linewidths interpreted as turbulence, velocities approach virial values: Molecular.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
Grain Shattering and Coagulation in Interstellar Medium Hiroyuki Hirashita (ASIAA, Taiwan) Huirong Yan (Univ. of Arizona) Kazu Omukai (NAOJ)
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
Phases et turbulence dans le milieu interstellaire Patrick Hennebelle Edouard Audit (CEA, Saclay) Shu-ichiro Inutsuka (Kyoto University), Robi Banerjee.
Compressible MHD turbulence in molecular clouds Lucy Liuxuan Zhang Prof. Chris Matzner University of Toronto.
Flow-Driven Formation of Molecular Clouds: Insights from Numerical Models The Cypress Cloud, Spitzer/GLIMPSE, FH et al. 09 Lee Hartmann Javier Ballesteros-Paredes.
Distribution of Phases of the ISM - and how to see them
Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
Dynamo action & MHD turbulence (in the ISM, hopefully…)
Properties of the thinnest cold HI clouds in the diffuse ISM
Presentation transcript:

Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Kyoto Univ.) Collaboration with Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto Univ.) Patrick Hennebelle (Paris Obs.) Masahiro Nagashima (Nagasaki Univ.) Keywords: radiative cooling/heating, thermal instability, MHD, supersonic velocity dispersion, etc.

Observed “Turbulence” in ISM Observation of Molecular Clouds line-width  v > C S Universal Supersonic Velocity Dispersion even in the clouds without star formation activity ⇒ should not due to star formation activity Numerical Simulation of (Isothermal) MHD Turbulence  Rapid Shock Dissipation or Cascade –Dissipation time « Lifetime of Molecular Clouds Gammie & Ostriker 1996, Mac Low 1997, Ostriker et al. 1999, Stone et al. 1999, etc… Recent Study on Origin of Supersonic Motion –Koyama & Inutsuka, ApJ 532, 980, 2000; ApJL 564, L97, 2002 –Kritsuk & Norman 2002a, ApJ 569, L127; 2002b ApJ 580, L51 –Audit & Hennebelle 2005, A&A 433, 1 –Heitsch, Burkert, Hartmann et al. 2005, ApJ 633, L113, Vazquez-Semadeni et al. 2006, etc...

Radiative Equilibrium WNM CNM Solid: N H =10 19 cm -2, Dashed: cm -2

Radiative Cooling & Heating Solid: Cooling, Dashed: Heating Koyama & Inutsuka (2000) ApJ 532, 980, based on Wolfire et al grains

Basic Equations radiative heating/cooling thermal conduction

Numerical Scheme 2D Eulerian Grid Scheme Second-Order Godunov Method –Exact Riemann Solver for “ P gas + P mag ” (Sano & Inutsuka 1999) –MoC-CT for Magnetic Field (Stone & Norman 1992) Radiative heating/cooling ( Koyama & Inutsuka 2002 ) Thermal Conduction –Classical (Parker 1953) † and saturated conduction We adopt 900 times large K in order to resolve Field length. –q sat K ▽ T/(q sat + K| ▽ T|), q sat =c s P gas Ambipolar Diffusion –Strong coupling approximation –Collision of H + and C + Ionization Equilibrium – CR ionization and radiative recombination of H atom

1D Shock Propagation into WNM Density-Pressure Diagram Density-Temperature Diagram –through unstable region unstable Koyama & Inutsuka 2000, ApJ 532, 980

1D Shock Propagation into CNM Density-Pressure Diagram Density-Temperature Diagram CNM becomes thermally unstable with shock. Koyama & Inutsuka 2000, ApJ 532,980 See also Hennebelle & Perault 1999, 2000 unstable

WNM Swept- Up by MHD Shock (3D)

Warning to Numerical Simulation Requirement for Spatial Resolution “ Field Condition ” We should resolve the structure of transition layer: F unstable F dashed line: Field 1965

No convergence for x  F /3 Koyama & Inutsuka (2004) ApJ, 602, L25

Hot Medium P=35000K/cm 3 2D/3D Calculation Hydro Code: 2nd-Order Godunov method –Exact Riemann Solver for “ P gas + P mag ” (Sano & Inutsuka 1999) –MoC-CT for Magnetic Field (Stone & Norman 1992) Thermal Conduction, and Radiative Cooling/Heating Boundary Conditions Upper Region: WNM –small density perturbations  A |k| n cos( kx +  ) Lower Region: Hot Medium Pressure driven SNR Boundary Condition –x- & y-direction : periodic –z-direction: Free WNM 24km/s

Shock Propagation into WNM Hot Medium Color: Density Koyama & Inutsuka, 2001 Ambient ISM WNM

Shock Propagation into WNM

Summary of TI-driven Turbulence 2D/3D Calculation of The Propagation of Shock Wave into WNM via Thermal Instability ⇒ fragmentation of the cold layer into cold clumps with long-sustained supersonic velocity dispersion ( ~ km/s) 1D: Shock ⇒ E th ⇒ E rad 2D&3D: Shock ⇒ E th ⇒ E rad + E kin  v ~ a few km/s < C S,WNM

2D Evolution from Unstable Equilibrium With Cooling/Heating and Thermal Conduction Without Physical Viscosity  Pr = 0

Evaporation of Spherical CNM in WNM Smaller CNM cloud evaporates: R~0.01pc clouds evaporate in ~Myr condensation evaporation Analytic Formula Nagashima, Koyama, Inutsuka & 2005, MN 361, L25 Nagashima, Inutsuka, & Koyama 2006, ApJL 652, in press (astro-ph/ ) Evaporation Timescale Size of CNM cloud CNM WNM RcRc

Evaporation of Spherical CNM in WNM If the ambient pressure is larger, the critical size of the stable cloud is smaller. Nagashima, Inutsuka, & Koyama 2006, ApJL 652, in press Ambient Pressure Critical Radius

Instability of Transition Layer important in maintaining the “turbulence” Cold Medium Warm Medium Evaporation Front Thickness

Instability of Transition Layer Similar Mechanisms… 1) Darrieus-Landau (DL) Instability Flame-Front Instability # Important in SNe Ia # Effect of Magnetic Field See Dursi (astroph/ ) 2) Corrugation Instability in MHD Slow Shock – Edelman 1990 – Stone & Edelman 1995 unburnedburned Flame Front Thickness

Linear Analysis of New Instability Growth Rate (Myr -1 ) Cold Medium Warm Medium Evaporation Front T 2 WNM CNM T 1 11 22 Field length wavenumber k y /2  pc   step function approx. isobaric approx. unstable Inoue, Inutsuka, & Koyama 2006, ApJ 652, in press (astro-ph/ )

Non-Linear Development of TI without External Forcing Amplitude of Turbulent Velocity vs. Domain Length Turbulent Motions Driven by Thermal Instability Koyama & Inutsuka 2006, astro-ph/ Pr = 2/3 Pr = 0.05

Equilibrium with Various Column Density Column Density Inutsuka & Koyama 1999

Allowed Region of 2-Phase Medium 4.0 Inutsuka & Koyama 1999

How long does WNM survive inside Molecular Clouds? When column density is sufficiently large, N H > cm -2 or A v > 1 mag ambient radiation field does not provide sufficient radiative heating for WNM. WNM simply cools down.

Various Timescales Dynamical Timescale of ISM  10 6 yr Ionization Equilibrium…  n p   n e n p recombination coeff.    2.6· (10 4 K /T ) 0.7 cm 3 s -1 ionization due to Cosmic Rays:   1.8· s -1 ionization degree: x = n e /n WNM  (n WNM /1cm -3 ) -1/2 Recombination Timescale  rec  1Myr Cooling Rate   erg cm -3 s -1 Cooling Timescale? x e =0.1 x e =0.01

Cooling Timescale of WNM in Molecular Clouds: no heating case Hennebelle & Inutsuka 2006 ApJ 647, 404 WNM cannot survive without heating. cooling within 1Myr P = 10P ISM P = P ISM x e =0.01 Equilibrium ionization x e =0.1

Is there any heating to WNM inside Molecular Clouds? When column density is sufficiently large, N H > cm -2 or A v > 1 mag ambient radiation field does not provide sufficient radiative heating for WNM. Without any heating WNM simply cools down very quickly.

Is there any heating? Obs... Ubiquitous Supersonic Motion Theory...Rapid Dissipation of Supersonic Motions  Heating due to Dissipation What is the effect of dissipation of supersonic motions? How effective in gas heating?

Schematic Picture Hennebelle & Inutsuka 2006 ApJ 647, 404

Heating due to Dissipation of MHD Waves  B  B  E wave  B 2 /8  Assume B  G (n WNM / 1cm -3 ) 0.5 (e.g., Heiles & Troland) Damping Timescale: t damp = 2  i /(V A 2 k 2 )   (v rms /km s -1 ) 0.75 cm 3 g -1 s -1 Glassgold et al Heating Rate:  E wave /t damp   (1cm 3 /n WNM ) 0.5 (1pc/ ) 2 erg -1 s -1 & Cooling Rate:  WNM  erg cm -3 s -1

WNM in Molecular Clouds: Thermal Equilibrium with MHD Wave Heating Hennebelle & Inutsuka 2006 ApJ 647, 404 P MC =nT=10 4 (n/10 3 )(T/10K) Heating is sufficient for WNM to survive in MC. Interstellar Radiation Case MHD Wave Heating

Summary Shock waves in ISM create turbulent CNM embedded in WNM. In TI-driven turbulence in Multi-Phase ISM –Evaporation/Condensation of CNM clouds –New Instability in Evaporation Front Can WNM Survive in Molecular Clouds? –Possible: Dissipation of MHD Waves Future Work RHD calculation of the evolution of two phase medium… When self-gravity becomes important?

Radiative Equilibrium: Column Density Dependence Inutsuka & Koyama 2000 Cooling Timescale

Turbulence in Molecular Clouds Linewidth-Size Relation (Larson’s Law) cm -2. N H cm -2 L (pc) Heyer & Brunt 2004