Transmission Media
Overview zGuided - wire zUnguided - wireless zCharacteristics and quality determined by medium and signal zFor guided, the medium is more important zFor unguided, the bandwidth produced by the antenna is more important zKey concerns are data rate and distance
Design Factors zBandwidth yHigher bandwidth gives higher data rate zTransmission impairments yAttenuation zInterference zNumber of receivers yIn guided media yMore receivers (multi-point) introduce more attenuation
Guided Transmission Media zTwisted Pair zCoaxial cable zOptical fiber
Twisted Pair
Twisted Pair - Applications zMost common medium zTelephone network yBetween house and local exchange (subscriber loop) zWithin buildings yTo private branch exchange (PBX) zFor local area networks (LAN) y10Mbps or 100Mbps
Twisted Pair - Pros and Cons zCheap zEasy to work with zLow data rate zShort range
Twisted Pair - Transmission Characteristics zAnalog yAmplifiers every 5km to 6km zDigital yUse either analog or digital signals yrepeater every 2km or 3km zLimited distance zLimited bandwidth (1MHz) zLimited data rate (100MHz) zSusceptible to interference and noise
Coaxial Cable
Coaxial Cable Applications zMost versatile medium zTelevision distribution yAriel to TV yCable TV zLong distance telephone transmission yCan carry 10,000 voice calls simultaneously yBeing replaced by fiber optic zShort distance computer systems links zLocal area networks
Coaxial Cable - Transmission Characteristics zAnalog yAmplifiers every few km yCloser if higher frequency yUp to 500MHz zDigital yRepeater every 1km yCloser for higher data rates
Optical Fiber
Optical Fiber - Benefits zGreater capacity yData rates of hundreds of Gbps zSmaller size & weight zLower attenuation zElectromagnetic isolation zGreater repeater spacing y10s of km at least
Optical Fiber - Applications zLong-haul trunks zMetropolitan trunks zRural exchange trunks zSubscriber loops zLANs
Optical Fiber - Transmission Characteristics zAct as wave guide for to Hz yPortions of infrared and visible spectrum zLight Emitting Diode (LED) yCheaper yWider operating temp range yLast longer zInjection Laser Diode (ILD) yMore efficient yGreater data rate zWavelength Division Multiplexing
Wireless Transmission zUnguided media zTransmission and reception via antenna zDirectional yFocused beam yCareful alignment required z Omnidirectional ySignal spreads in all directions yCan be received by many antennae
Satellite Microwave zSatellite is relay station zSatellite receives on one frequency, amplifies or repeats signal and transmits on another frequency zRequires geo-stationary orbit yHeight of 35,784km zTelevision zLong distance telephone zPrivate business networks
Broadcast Radio zOmnidirectional zFM radio zUHF and VHF television zLine of sight zSuffers from multipath interference yReflections
Infrared zModulate noncoherent infrared light zLine of sight (or reflection) zBlocked by walls ze.g. TV remote control