In-Situ Measurements of Laser-Driven Relativistic Electron Currents in Underdense Plasma M.C. Kaluza, H.-P. Schlenvoigt, B. Beleites, F. Ronneberger, and.

Slides:



Advertisements
Similar presentations
An Image Filtering Technique for SPIDER Visible Tomography N. Fonnesu M. Agostini, M. Brombin, R.Pasqualotto, G.Serianni 3rd PhD Event- York- 24th-26th.
Advertisements

Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
Adnan Doyuran a, Joel England a, Chan Joshi b, Pietro Musumeci a, James Rosenzweig a, Sergei Tochitsky b, Gil Travish a, Oliver Williams a a UCLA/Particle.
Observation of the relativistic cross-phase modulation in a high intensity laser plasma interaction Shouyuan Chen, Matt Rever, Ping Zhang, Wolfgang Theobald,
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
LC-ABD P.J. Phillips, W.A. Gillespie (University of Dundee) S. P. Jamison (ASTeC, Daresbury Laboratory) A.M. Macleod (University of Abertay) Collaborators.
A Proof-of Principle Study of 2D optical streaking for ultra-short e-beam diagnostics using ionization electrons & circular polarized laser Lanfa Wang.
S. Varma, Y.-H. Chen, and H. M. Milchberg Institute for Research in Electronics and Applied Physics Dept. of Electrical and Computer Engineering Dept.
Acceleration of particles with lasers at RAL Peter A Norreys Physics Group Leader Central Laser Facility CCLRC Rutherford Appleton Laboratory visiting.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
High-charge energetic electron beam generated in the bubble regime Baifei Shen ( 沈百飞 ) State Key Laboratory of High Field Laser Physics, Shanghai Institute.
GEOMETRIC EFFECTS ON EUV EMISSIONS IN M. S. Tillack, K. L. University of California San Diego.
Diagnostics for Benchmarking Experiments L. Van Woerkom The Ohio State University University of California, San Diego Center for Energy Research 3rd MEETING.
Modeling the benchmark experiments Mingsheng Wei, Fei He, John Pasley, Farhat Beg,… University of California, San Diego Richard Stephens General Atomics.
Temporal evolution of plasma rotation measurement in tokamaks using an optical monochromator and two photomultipliers as detector Severo J. H. F. .
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
Introductio n The guiding of relativistic laser pulse in performed hollow plasma channels Xin Wang and Wei Yu Shanghai Institute of Optics and Fine Mechanics,
Imaging Diagnostics at the H-1 National Plasma Fusion Research Facility Left: The coherence tomography system Above: Plasma emission reconstructions compared.
Measurement of Magnetic field in intense laser-matter interaction via Relativistic electron deflectometry Osaka University *N. Nakanii, H. Habara, K. A.
Outline 1.ERL facility for gamma-ray production [A. Valloni] 2.ERL facility - Tracking Simulations [D. Pellegrini] 3.SC magnet quench tests [V. Chetvertkova]
TOF Mass Spectrometer &
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
UCLA Frequency-domain interferometry diagnostic system for the detection of relativistic plasma waves Catalin V. Filip, Electrical Engineering Department,
COST Meeting Krakow May 2010 Temperature and K  -Yield radial distributions of laser-produced solid-density plasmas Ulf Zastrau X-ray Optics Group - IOQ.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Alvaro Sanchez Gonzalez Prof. Jon Marangos Prof. Jim Clarke
TIME-RESOLVED OPTICAL SPECTROSCOPY OF HIGH-TEMPERATURE PLASMAS M.J. Sadowski  , K. Malinowski , E. Skladnik-Sadowska , M. Scholtz , A. Tsarenko ¤
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Magnetization dynamics
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
EO sampling technique for femtosecond beam characterization
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
R. Kupfer, B. Barmashenko and I. Bar
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
High gradient acceleration Kyrre N. Sjøbæk * FYS 4550 / FYS 9550 – Experimental high energy physics University of Oslo, 26/9/2013 *k.n.sjobak(at)fys.uio.no.
Fast Electron Temperature Scaling and Conversion Efficiency Measurements using a Bremsstrahlung Spectrometer Brad Westover US-Japan Workshop San Diego,
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
A.P. Potylitsyn, S.Yu. Gogolev
Compact X-ray & Emittance Measurement by Laser Compton Scattering Zhi Zhao Jan. 31, 2014.
Measurements of the X-ray/pump laser pulse timing Valery Dolgashev, David Fritz, Yiping Feng, Gordon Bowden SLAC 48th ICFA Advanced Beam Dynamics Workshop.
M. Hosaka a, M. Katoh b, C. Szwaj c, H. Zen b M. Adachi b, S. Bielawski c, C. Evain c M. Le Parquier c, Y. Takashima a,Y. Tanikawa b Y. Taira b, N. Yamamoto.
Laser-Plasma Acceleration in Sweden Electrons Protons X-rays Claes-Göran Wahlström Department of Physics, Lund University and Lund Laser Centre.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
Particle and x-ray generation by irradiation of gaseous and solid targets with a 100TW laser pulse Oswald Willi Heinrich-Heine University, Düsseldorf Germany.
HT-7 Proposal of the investigation on the m=1 mode oscillations in LHCD Plasmas on HT-7 Exp2005 ASIPP Youwen Sun, Baonian Wan and the MHD Team Institute.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
Malte C. Kaluza Institute of Optics and Quantum Electronics Helmholtz-Institute Jena Friedrich-Schiller-University Jena, Germany Optical Diagnostics for.
GRK-1203 Workshop Oelde Watching a laser pulse at work
Mitglied der Helmholtz-Gemeinschaft Anupam Karmakar Jülich Supercomputing Centre Forschungszentrum Jülich, Germany Laser Plasma interactions at Relativistic.
(LASER) PLASMA DIAGNOSTICS
Friedrich-Schiller-University Jena
Acceleration of particles with lasers at RAL Peter A Norreys
Laser wakefield accelerated electrons
8-10 June Institut Henri Poincaré, Paris, France
Control of laser wakefield amplitude in capillary tubes
From: Magnetic Field Effects on Laser Drilling
All-Optical Injection
Peking University: Jinqing Yu, Ronghao Hu, Haiyang Lu & Xueqing Yan
Diagnosis of a High Harmonic Beam Using
Beam size diagnostics using diffraction radiation
Laser-assisted photoionization for attosecond pulse measurements
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

In-Situ Measurements of Laser-Driven Relativistic Electron Currents in Underdense Plasma M.C. Kaluza, H.-P. Schlenvoigt, B. Beleites, F. Ronneberger, and H. Schwoerer Institute for Optics und Quantum Electronics, University of Jena, Germany S.P.D. Mangles, A.G.R. Thomas, Z. Najmudin, C.D. Murphy, A.E. Dangor, and K. Krushelnick Imperial College London, United Kingdom 385. Wilhelm and Else Heraeus Seminar, Bad Honnef, 13 th February 2007

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Outline Motivation Faraday-rotation technique Experimental setup Experimental results from Faraday-rotation Discussion and outlook

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Motivation Use of laser-generated mono-energetic electron beams for various applications, e.g. generation of ultra-short X-ray pulses, requires controllable electron beam generation. Direct insight into acceleration dynamics desirable. Non-invasive diagnostic high spatial and temporal resolution!  Faraday-rotation technique

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Technique  Rotation of probe polarization:  Measure  rot  and n e all over the plasma to get B-field distribution! Probing of magnetic fields in plasma with linearly-polarized pulse: If  magnetically induced difference of  for the two circularly-polarized probe components

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Experimental Setup J ETI laser parameters: E laser = 800 mJ,  laser = 80 fs, f/6 OAP, I laser  2…3  W/cm 2 Probe pulse:  probe  100 fs, probe = 800 nm

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Two polarograms from two (almost) crossed polarizers: polarogram 1 Deduce rotation angle  rot from pixel-by-pixel division of polarogram intensities: polarogram µm 340 µm

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Really due to a rotation of the plane of polarization? 50 µm main pulse

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Reversal of intensity ratio by changing polarizer angles:  Intensity changes indeed due to rotation of probe polarization! How large are rotation angle  rot and magnetic field B(r) ?

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Deduction of rotation angle  rot :

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Deduction of rotation angle  rot : suppression necessary beyond plasma boundaries

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Measurement of electron density n e :

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Measurement of electron density n e :

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Measurement of electron density n e :

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Calculation of magnetic field distribution: modified Abel-inversion of  rot (assuming cyl. symmetry)  B. Walton, Ph.D. thesis, IC London (2004)

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Calculation of magnetic field distribution: modified Abel-inversion of  rot (assuming cyl. symmetry)  B. Walton, Ph.D. thesis, IC London (2004)

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Faraday-Rotation Measurements Measured B-field with peak of ~ 0.5 MG is eqivalent to ~ 2.8 kA, ~ 8 µm radius, ~ 100 fs duration (limited by temporal resolution) ~ 280 pC electron bunch Calculation of magnetic field distribution: modified Abel-inversion of  rot (assuming cyl. symmetry)  B. Walton, Ph.D. thesis, IC London (2004)

Malte Kaluza Measurement of Relativistic Electron Currents Heraeus-Seminar 13 th February Summary Measurement of magnetic field distributions from laser-driven electron currents in underdense plasma using Faraday-rotation Direct observation of highly localized electron current: I bunch ~ 2.8 kA, r bunch ~ 8 µm,  bunch ~ 100 fs, Q bunch ~ 280 pC Experimental data currently analyzed: - temporal evolution of electron current, - dependence on electron density For more information see poster by H.-P. Schlenvoigt