1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.

Slides:



Advertisements
Similar presentations
R. Kumar 1, K. Tokmakov 2, A. V. Cumming 1, G. D. Hammond 1, J. Hough 1, S. Rowan 1 1 SUPA, University of Glasgow, Glasgow, G12 8QQ, UK, 2 SUPA, University.
Advertisements

2 mm diameter region 300 micron thermoelastic noise cancellation section Neck region, for transition from 2 mm stock to 300  m fibre 150  m section for.
1 Test Mass Suspensions for AIGO Ben Lee The University of Western Australia.
Nawrodt 10/07 #1/21 R. Nawrodt, A. Schröter, C. Schwarz, D. Heinert, M. Hudl, W. Vodel, A. Tünnermann, P. Seidel STREGA Meeting Tübingen 10/
Silicate bonding on silicon and silica S. Reid, J. Hough, I. Martin, P. Murray, S. Rowan, J. Scott, M.v. Veggel University of Glasgow.
Coating-reduced interferometer optics Resonant waveguide gratings S. Kroker, T. Käsebier, E.-B. Kley, A. Tünnermann.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
4th ILIAS-GW Annual Meeting J.P. Zendri Tuebingen 8-9 October 2007 Materials for Dual: Losses at low Temperature on Si and SiC.
Dissipation in Nanomechanical Resonators Peter Kirton.
Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
Substrate mechanical loss studies Sheila Rowan (Stanford University) for: LIGO Laboratory (Caltech, MIT, LLO, LHO) LSC Partners (University of Glasgow,
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Nawrodt 05/2010 Thermal noise and material issues for ET Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Overview of coatings research and recent results at the University of Glasgow M. Abernathy, I. Martin, R. Bassiri, E. Chalkley, R. Nawrodt, M.M. Fejer,
1 An overview of work in Glasgow relevant to the design study Stuart Reid 1 SUPA, University of Glasgow Glasgow University – 22 July 2010.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Composite mirror suspensions development status and directions ELiTES activity interim report JGW-G
SUSPENSION DESIGN FOR ADVANCED LIGO: Update on GEO Activities Norna A Robertson University of Glasgow for the GEO 600 suspension team LSC Meeting, Hanford.
Simulation for KAGRA cryogenic payload: vibration via heat links and thermal noise Univ. Tokyo, D1 Takanori Sekiguchi.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
FSU Jena Nawrodt 10/06 #1/16 Ronny Nawrodt ILIAS/STREGA Annual Meeting London, 27 October 2006 Friedrich-Schiller-Universität Jena, Germany Cryogenic Q-measurements.
18 th - 22 nd May 2015 LIGO-G GWADW Alaska Suspension Upgrades for Enhanced Interferometers Giles Hammond (Institute for Gravitational Research,
LIGO-G Z Thermal noise in sapphire - summary and plans Work carried out at: Stanford University University of Glasgow Caltech MIT.
External forces from heat links in cryogenic suspensions D1, ICRR, Univ. Tokyo Takanori Sekiguchi GWADW in Hawaii.
Cold damping of fused silica suspension violin modes V.P.Mitrofanov, K.V.Tokmakov Moscow State University G Z.
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
Effect of Charging on Thermal Noise Gregory Harry Massachusetts Institute of Technology - Core Optics and Suspensions Working Groups - March 19, 2004 –
Friedrich-Schiller-Universität Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz19 th May GWADW Kyoto 1 Losses in.
ILIAS - GWA N5 - Strega JRA3 General Meeting Orsay - November 5th-6th, 2004 M1 Activities.
Experimental investigation of dynamic Photothermal Effect
Thermal Noise performance of advanced gravitational wave detector suspensions Alan Cumming, on behalf of the University of Glasgow Suspension Team 5 th.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Elba 2006 Suppressing Parametric Instabilities Li Ju, Slawek Gras, Pablo Barriga, Chonnong Zhao, Jerome Degallaix, David Blair, Yaohui Fan, Zewu Yan University.
Thermal Noise in Thin Silicon Structures
Suspension Thermal Noise Giles Hammond (University of Glasgow) on behalf of the Strawman Red Team GWADW 2012, 18 th May 2012 LIGO-G
STREGA & ET - 4th ILIAS-GW general meeting 1 STREGA legacy for ET Michele Punturo INFN Perugia.
C1) K. Tokmakov on behalf of the Advanced LIGO Suspensions Team Monolithic suspensions of the mirrors of the Advanced LIGO gravitational-wave detector.
Optics related research for interferometric gravitational wave detectors S. Rowan for the Optics working group of the LIGO Scientific Collaboration SUPA,
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
LIGO-G R 1 Gregory Harry and COC Working Group Massachusetts Institute of Technology - Technical Plenary Session - March 17-20, 2003 LSC Meeting.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation.
Design and Testing of a Silicon Suspension A. Cumming 1, G. Hammond 1, K. Haughian 1, J. Hough 1, I. Martin 1, R. Nawrodt 2, S. Rowan 1, C. Schwarz 2,
Modelling and Testing of Cryogenic Suspensions Giles Hammond Institute for Gravitational Research SUPA University of Glasgow on behalf of the KAGRA suspensions.
WP2-WP3 Joint Meeting - Jena - March 1-3, Several different mechanisms contribute to the thermal noise of the mirror: Brownian (BR)(substrate, coating)
Studies of materials to reduce coating thermal noise K. Craig 1, I.W. Martin 1, S. Reid 2, M. Abernathy 1, R. Bassiri 1,4, K. Borisenko 3, A. Cumming 1,
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Ronny Nawrodt 1st ELiTES General Meeting Tokyo 04/10/2012 Silicon Surfaces – Silicon Loss and Silicon Treatments –
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
Michele Punturo adVirgo and ET thermal noise meeting 1.
STREGA WP4 coating development GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz Current status of the bulk.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Cryogenic Si-Si Bond Strength Testing
Thermal noise calculations for cryogenic optics
Mirror thermal noises and its implications on the mirror design
Current status of coating research in Glasgow
Cryogenic Si-Si Bond Strength Testing
S. Rowan, M. Fejer, E. Gustafson, R. Route, G. Zeltzer
External forces from heat links in cryogenic suspensions
Test Mass Suspensions for AIGO
Presentation transcript:

1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2 Workshop, Genoa/Italy 15 th September 2009

2/16 Nawrodt, Genoa 09/2009 Content design study report mirror thermal noise calculation size estimate of the mirror novel concept: nano-structured optics (surface loss of silicon) suspension thermal noise experimental work supporting the ET design next steps

3/16 Nawrodt, Genoa 09/2009 Mirror thermal noise review of mirror thermal noise revealed a coating Brownian noise limited regime (see talk J. Franc or ET ) 20 K Si(111) standard dielectric coating (Ta 2 O 5 / SiO 2 )

4/16 Nawrodt, Genoa 09/2009 Mirror thermal noise reason for high coating Brownian noise is the increasing mechanical loss of the amorphous coating materials

5/16 Nawrodt, Genoa 09/2009 Size estimate further reduction by means of larger beam radius unrealistic beam radius needed combination of upscaling and better coatings needed max. beam radius determined by availability of silicon (dia. 20 inch) 18 K

6/16 Nawrodt, Genoa 09/2009 Mirror thermal noise What coating loss is needed and how can it be achieved? international coating research is ongoing, but so far we don’t have a full understanding of the origin of this loss 4×10 -4 for Ta 2 O 5 2×10 -4 for SiO 2 example

7/16 Nawrodt, Genoa 09/2009 Monolithic Waveguide Mirror Si 500 nm aim: no amorphous coating materials needed  low mechanical loss  low thermal noise high reflectivity was shown (> 99.8%) combined use at 1550 nm could reduce optical absorption and would thus reduce problems arising for the heat extraction surface area is roughly doubled by the structure  surface loss will contribute stronger

8/16 Nawrodt, Genoa 09/2009 Surface Loss of Silicon A thin lossy surface layer is assumed: If the structure is thin only the top and bottom surface contribute: Following Gretarsson and Harry (1999): with the dissipation depth d s which is obtained from measurements with oscillators and at temperatures where the surface loss will dominate (thin samples at low temperatures).  … displacement field

9/16 Nawrodt, Genoa 09/2009 Surface Loss of Silicon mechanical loss obtained from different published papers for silicon oscillators with small dimensions (T<18 K) in pure bending  =  sub × d s = 0.5 pm loss can be influenced by different treatment techniques (e.g. hydrogen passivation)  currently under investigation

10/16 Nawrodt, Genoa 09/2009 Monolithic Waveguide Mirror [Li et al., Appli. Phys. Lett. 83 (2003)] Brownian thermal noise estimate  = 0.5 pm S/V = 4/t (t … thickness) µ ~ 3 for very small structures the size dependence of the Young’s modulus needs to be considered no additional losses are assumed (TE cancelled at 18 K)

11/16 Nawrodt, Genoa 09/2009 Monolithic Waveguide Mirror Brownian thermal noise estimate monolithic waveguides have a smaller contribution than the bulk thermal noise modelling still at an early stage total thermal noise, 18 K18 K

12/16 Nawrodt, Genoa 09/2009 Suspension thermal noise The mechanical loss of silicon suspension elements arises from 3 main contributions – thermoelastic, surface and intrinsic bulk. Thermoelastic peak shifts to higher frequencies while cooling. 300 K 50 K  680 µm

13/16 Nawrodt, Genoa 09/2009 Suspension thermal noise 18 K simple TN estimate for 1 stage monolithic suspension full treatment (with correlations) leads to higher thermal noise in the pendulum noise (see e.g. poster P. Amaldi8) circular Si(100) fibre (  680 µm, 4 fibres for each optical element, L = 1 m) mirror (180 kg,  500 mm, Si(111)) beam radius 90 mm

14/16 Nawrodt, Genoa 09/2009 Experimental work mechanical loss of coating materials (understanding and reduction of mechanical loss) mechanical loss of silicon flexures (extraction of surface loss, influence of surface treatment) silicon bonding, mechanical loss of bonds (bond loss values needed for realistic design) strengths of bonds (300 and 80 K) (pieces need to be bonded, mechanical “stability”)

15/16 Nawrodt, Genoa 09/2009 Bond experiments bond technique needs to be characterised for the design: mechanical properties (breaking strength, mechanical loss, Young’s modulus) thermal properties (thermal conductivity, collaboration with the Florence group) details at the ET annual meeting

16/16 Nawrodt, Genoa 09/2009 Future work refined suspension model based on realistic design information needed on exact design, temperature distribution, requirements due to cooling strategy Xylophone “option” (optimisation, noise levels) heat extraction concepts combination of results  suggestions for design study

17/16 Nawrodt, Genoa 09/2009 coating limit is valid for all our design curves!

18/16 Nawrodt, Genoa 09/2009 number  T/Kgeometryoscillatorreference 11.5× µ m × 4 … 6 µ m × 60 nm cantileverStowe1997 [5] 24.0× … 300 µ m × 10 µ m × 70 nm cantileverYasamura2000 [6] 31.2× µ m × 3.9 µ m × 290 nm cantileverMamin2001 [7] 45.0× µ m × 45 µ m × 1.5 µ m cantileverWago1995 [8] 55.0× KNT geometry 50 µ m cantilever Glasgow/Jena2009 (unpublished) [9] 64.4× mm × 10 mm × 92 µ m cantileverReid2006 [10] 73.0× mm × 8 mm × 130 µ m cantileverKroker2009 diploma [11] 81.0× µ m DPOMihailovich1992 [12] 92.2× µ m DPOSpiel2000 [13] 105.0× µ m DPOKleiman1987 [14] 111.3×  10 cm × 0.5 mm diskZendri2008 [15] 122.2×  7.6 cm × 1.2 cm cylinderNawrodt2008 [16] 135.0×  10.6 cm × 22.9 cm cylinderMcGuigan1978 [17] Reference list of the surface loss extraction data

19/16 Nawrodt, Genoa 09/2009 [5]T. D. Stowe et al., Attonewton force detection using ultrathin silicon cantilevers, Appl. Phys. Lett. 71 (1997) 288. [6]K. Y. Yasamura et al., Quality Factors in Micron- and Submicron-Thick Cantilevers, Journal of Microelectromechanical Systems 9 (2000) 117. [7]H. J. Mamin, D. Rugar, Sub-attonewton force detection at millikelvin temperatures, Appl. Phys. Lett. 79 (2001) [8]K. Wago et al., Low-temperature magnetic resonance force detection, J. Vac. Sci. Technol. B 14 (1996) [9]unpublished (measurements in June/July 2009) [10]S. Reid et al., Mechanical dissipation in silicon flexures, Phys. Lett. A 351 (2006) 205. [11]S. Kroker, diploma thesis, University of Jena, [12]R. E. Mihailovich, J. M. Parpia, Low Temperature Mechanical Properties of Boron-Doped Silicon, Phys. Rev. Lett. 68 (1992) [13]C. L. Spiel, R. O. Pohl, Normal modes of a Si(100) double-paddle oscillator, Rev. Sci. Instrum. 72 (2001) [14]R. N. Kleiman et al., Two-Level Systems Observed in the Mechanical Properties of Single-Crystal Silicon at Low Temperatures, Phys. Rev. Lett. 59 (1987) [15]J. P. Zendri et al., Loss budget of a setup for measuring mechanical dissipations of silicon wafers between 300 and 4 K, Rev. Sci. Instrum. 79 (2008) [16]R. Nawrodt et al., High mechanical Q-factor measurements on silicon bulk samples, J. Phys.: Conf. Ser. 122 (2008) [17]D. F. McGuigan et al., Measurements of the Mechanical Q of Single-Crystal Silicon at Low Temperatures, J. Low. Temp. Phys. 30 (1978) 621.