Latvijas Aktuāru Asociācija AN INTRODUCTION TO COPULAS Gaida Pettere Professor, Dr. Math. Riga Technical University, Chairmen of Latvian Actuarial Association.

Slides:



Advertisements
Similar presentations
Copula Representation of Joint Risk Driver Distribution
Advertisements

STATISTICS Joint and Conditional Distributions
The Stand Structure Generator - further explorations into the joy of copula Dr. John A. Kershaw, Jr., CF, RPF Professor of Forest Mensuration UNB, Faculty.
Probabilistic Analysis of Hydrological Loads to Optimize the Design of Flood Control Systems B. Klein, M. Pahlow, Y. Hundecha, C. Gattke and A. Schumann.
Some additional Topics. Distributions of functions of Random Variables Gamma distribution,  2 distribution, Exponential distribution.
INTRODUCTION TO COPULAS
Introduction to Copulas B. Wade Brorsen Oklahoma State University.
Donald F. Behan Society of Actuaries Meeting Phoenix, AZ1 Using Copulas to Model Extreme Events by Donald F. Behan and Sam Cox Georgia State University.
Modelling with parameter- mixture copulas October 2006 Xiangyuan Tommy Chen Econometrics & Business Statistics The University of Sydney
Copula Functions and Bivariate Distributions: Applications to Political Interdependence Alejandro Quiroz Flores, Wilf Department of Politics, NYU Motivation.
Pair-copula constructions of multiple dependence Workshop on ''Copulae: Theory and Practice'' Weierstrass Institute for Applied Analysis and.
Master thesis presentation Joanna Gatz TU Delft 29 of July 2007 Properties and Applications of the T copula.
Models for construction of multivariate dependence Workshop on Copulae and Multivariate Probability distributions in Finance – Theory, Applications,
Chain Rules for Entropy
Markov Chains 1.
Simulating Exchangeable Multivariate Archimedean Copulas and its Applications Authors: Florence Wu Emiliano A. Valdez Michael Sherris.
Economic Capital and the Aggregation of Risks Using Copulas
Probability theory 2010 Main topics in the course on probability theory  Multivariate random variables  Conditional distributions  Transforms  Order.
1 Engineering Computation Part 6. 2 Probability density function.
Probability theory 2011 Main topics in the course on probability theory  The concept of probability – Repetition of basic skills  Multivariate random.
Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models Authors: Florence Wu Michael Sherris Date: 11 November 2005.
Modeling Related Failures in Finance Arkady Shemyakin MFM Orientation, 2010.
Archimedean Copulas Theodore Charitos MSc. Student CROSS.
1 Multivariate Normal Distribution Shyh-Kang Jeng Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking.
Copula functions Advanced Methods of Risk Management Umberto Cherubini.
Pricing pension funds guarantees using a copula approach Marco Micocci – Giovanni Masala University of Cagliari – Department of Economics Via S. Ignazio.
P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.
Correlations and Copulas 1. Measures of Dependence 2 The risk can be split into two parts: the individual risks and the dependence structure between them.
H. Chen, S.H. Cox, and J. Wen Longevity 5 Conference September 26, 2009Multivariate Threshold Life Table 1 Pricing Mortality-linked Securities with Dependent.
Copulas from Fokker-Planck equation
CASA June 2006 BRATISLAVA Mária Bohdalová Faculty of Management, Comenius University Bratislava Oľga Nánásiová Faculty of Civil.
12/07/2008UAI 2008 Cumulative Distribution Networks and the Derivative-Sum-Product Algorithm Jim C. Huang and Brendan J. Frey Probabilistic and Statistical.
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Two Functions of Two Random.
Elements of Financial Risk Management Second Edition © 2012 by Peter Christoffersen 1 Distributions and Copulas for Integrated Risk Management Elements.
Random Numbers and Simulation  Generating truly random numbers is not possible Programs have been developed to generate pseudo-random numbers Programs.
Transformations of Risk Aversion and Meyer’s Location Scale Lecture IV.
Capital Allocation: Challenges and Options James Orr and Andreas Tsanakas.
Modelling the short-term dependence between two remaining lifetimes of a couple Jaap Spreeuw and Xu Wang Cass Business School IME Conference, July 2007.
Copula Models and Speculative Price Dynamics Umberto Cherubini University of Bologna RMI Workshop National University of Singapore, 5/2/2010.
Multiple Random Variables Two Discrete Random Variables –Joint pmf –Marginal pmf Two Continuous Random Variables –Joint Distribution (PDF) –Joint Density.
Lévy copulas: Basic ideas and a new estimation method J L van Velsen, EC Modelling, ABN Amro TopQuants, November 2013.
Using Copulas.
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Two Random Variables.
Tip #1: Look at your data (1)
IE 300, Fall 2012 Richard Sowers IESE. 8/30/2012 Goals: Rules of Probability Counting Equally likely Some examples.
Gary G Venter Tails of Copulas. 2 Guy Carpenter Correlation Issues Correlation is stronger for large events Can model by copula methods Quantifying correlation.
Computing the value at risk of a portfolio via overlapping hypercubes Marcello Galeotti 1.
1 Sampling Distribution of Arithmetic Mean Dr. T. T. Kachwala.
STOCHASTIC HYDROLOGY Stochastic Simulation of Bivariate Distributions Professor Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering National.
Models for construction of multivariate dependence 2nd Vine Copula Workshop, Delft, 16. December 2008 Kjersti Aas, Norwegian Computing Center.
Pair-copula constructions of multiple dependence Vine Copula Workshop Delft Institute of Applied Mathematics, 19. November, 2007 Kjersti Aas.
Stochastic Hydrology Random Field Simulation Professor Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering National Taiwan University.
F Y (y) = F (+ , y) = = P{Y  y} 3.2 Marginal distribution F X (x) = F (x, +  ) = = P{X  x} Marginal distribution function for bivariate Define –P57.
Week 21 Order Statistics The order statistics of a set of random variables X 1, X 2,…, X n are the same random variables arranged in increasing order.
1 Conditional Extreme Value Theory and Time Varying Copulas: Evidence from Australian and International Financial Markets by CUONG NGUYEN and M. ISHAQ.
1 Lecture Plan Modelling Profit Distribution from Wind Production (Excel Case: Danish Wind Production and Spot Prices) Reasons for copula.
Week 21 Statistical Model A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced.
Basics of Multivariate Probability
Inference about the slope parameter and correlation
Main topics in the course on probability theory
The distribution function F(x)
Inference about the Slope and Intercept
Probability & Statistics Probability Theory Mathematical Probability Models Event Relationships Distributions of Random Variables Continuous Random.
Regression Models - Introduction
7. Two Random Variables In many experiments, the observations are expressible not as a single quantity, but as a family of quantities. For example to record.
Inference about the Slope and Intercept
Stat 223 Introduction to the Theory of Statistics
7. Two Random Variables In many experiments, the observations are expressible not as a single quantity, but as a family of quantities. For example to record.
7. Two Random Variables In many experiments, the observations are expressible not as a single quantity, but as a family of quantities. For example to record.
Regression Models - Introduction
Presentation transcript:

Latvijas Aktuāru Asociācija AN INTRODUCTION TO COPULAS Gaida Pettere Professor, Dr. Math. Riga Technical University, Chairmen of Latvian Actuarial Association

Latvijas Aktuāru Asociācija CONTENT 1.INTRODUCTION 2.TWO ARGUMENT COPULAS 3.ARCHIMEDEAN COPULAS 4.MULTIVARIATE COPULAS 5.USING COPULAS IN FINANCE 6.USING COPULAS IN INSURANCE

Latvijas Aktuāru Asociācija 1. INTRODUCTION

Latvijas Aktuāru Asociācija CONTINUOUS RANDOM VARIABLES Distribution function: Properties: 1) Values are changing from 0 to 1. 2) Is not decreasing.

Latvijas Aktuāru Asociācija CONTINUOUS RANDOM VARIABLES Graph:

Latvijas Aktuāru Asociācija CONTINUOUS RANDOM VARIABLES Density function of continuous random variables is or Properties: 1) Non negative. 2)

Latvijas Aktuāru Asociācija CONTINUOUS RANDOM VARIABLES Graph

Latvijas Aktuāru Asociācija CONTINUOUS RANDOM VARIABLES VAR(p%) – risk measure (Value at risk)

Latvijas Aktuāru Asociācija CONTINUOUS RANDOM VARIABLES Graph of multivariate distribution function:

Latvijas Aktuāru Asociācija CONTINUOUS RANDOM VARIABLES Graph of multivariate density function:

Latvijas Aktuāru Asociācija 2. TWO ARGUMENT COPULAS

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS Informal definition: H(x,y)= C(u,v), u=F 1 (x) v=F 2 (y)

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS Formal definition:

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS A two-dimensional copula is function C with the following properties: 1. For every :. 2. For every : and. 3. For every with and :. A function that fulfils property 1 is also called grounded and a function that fulfils property 2 is also called 2-increasing.

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS Sklar’s theorem (1959) Let H be a joint distribution function with margins F 1 and F 2. Then there exists a copula C with for every. If F 1 and F 2 are continuous, then C is unique. On the other hand, if C is a copula and F 1 and F 2 are univariate distribution functions, then the function H defined by previous equality, is a joint distribution function with margins F 1 and F 2.

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS Multivariate density: h(x,y)=c(u,v)*f 1 (x)*f 2 (y) where c(u,v)=∂²C(u,v)/(∂u∂v) and u=F 1 (x), v=F 2 (y)

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS There are two principal ways of using the copula idea:  We can extract copulas from well-known multivariate distribution functions.  We can also create new multivariate distribution functions by joining arbitrary marginal distributions together with copulas.

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS Methods of constructing copulas:  The inversion method.  Geometric methods.  Algebraic methods. ☺ Nelsen R B (1999) An Introduction to Copulas. Springer-Verlag, New York.

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS Examples of two argument copulas oThe Farlie-Gumbel-Morgenstern family of copulas (Morgenstern, D.(1956), Gumbel, E. J. (1958), Farlie, D. J. G. (1960)) C(u,v)=uv+ θuv(1-u)(1-v) oThe Ali-Mikhail-Hag copula C(u,v)=uv/[1-θ(1-u)(1-v)] θ belongs to [-1,1]

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS The main questions: 1.How to find appropriate copula to data? 2.How to estimate copula parameters? ?

Latvijas Aktuāru Asociācija TWO ARGUMENT COPULAS Roberto de Matteis, “Fitting Copulas to Data”, Diploma Thesis, Univ. Zurich, 2001 Lindskog, F., “Modelling Dependence with Copulas”, Master Theses-MS , Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden, 2000

Latvijas Aktuāru Asociācija 3. ARCHIMEDEAN COPULAS

Latvijas Aktuāru Asociācija ARCHIMEDEAN COPULAS Copulas, which are possible to write in the form or are called Archimedean copulas. The function is called a generator of the Archimedean copula.

Latvijas Aktuāru Asociācija For Archimedean copula is true that for any in, function is the univariate distribution function

Latvijas Aktuāru Asociācija It is natural to compare univariate distribution function with its nonparametric estimator where

Latvijas Aktuāru Asociācija ARCHIMEDEAN COPULAS Nelsen R B (1999) An Introduction to Copulas. Springer-Verlag, New York. Genest, C., and Rivest, L., “Statistical Inference Procedures for Bivariate Archimedean Copulas”, Journal of the American Statistical Association 88: p

Latvijas Aktuāru Asociācija ARCHIMEDEAN COPULAS

Latvijas Aktuāru Asociācija Frank’s copula

Latvijas Aktuāru Asociācija Frank’s copula with uniform margins:

Latvijas Aktuāru Asociācija Gumbel copula

Latvijas Aktuāru Asociācija Gumbel copula with uniform margins

Latvijas Aktuāru Asociācija Clayton’s copula

Latvijas Aktuāru Asociācija Clayton’s copula with uniform margins

Latvijas Aktuāru Asociācija Frank’s copula with beta and normal margins

Latvijas Aktuāru Asociācija Gumbel copula with beta and normal margins

Latvijas Aktuāru Asociācija Clayton’s copula with beta and normal margins

Latvijas Aktuāru Asociācija Algorithm for Archimedean copula Generate two independent uniform variates and ; Set, where denotes the quasi-inverse of the distribution function Set and The desired pair is

Latvijas Aktuāru Asociācija 4. MULTIVARIATE COPULAS

Latvijas Aktuāru Asociācija MULTIVARIATE COPULAS Definition: multivariate copula is function C from with following properties: 1) for every u from C(u)=0, if at least one coordinate of u is 0, 2) if all u coordinates equal 1 except one, then C(u) equals to that coordinate, 3) n-th order differences is not negative. Sklar’s theorem proofs the same what was proved in two dimensional case.

Latvijas Aktuāru Asociācija MULTIVARIATE COPULAS Examples: 1.The Archimedean copulas: Definition a) Clayton family b) Gumbel-Hougaard family

Latvijas Aktuāru Asociācija MULTIVARIATE COPULAS Examples: 2. The Farlie-Gumbel-Morgenstern copula 3. Two argument copula

Latvijas Aktuāru Asociācija MULTIVARIATE COPULAS Kollo, T., Pettere, G. “Multivariate skew t- copula” sent for publication in journal „Statistical Papers”

Latvijas Aktuāru Asociācija MULTIVARIATE COPULAS

Latvijas Aktuāru Asociācija MULTIVARIATE COPULAS

Latvijas Aktuāru Asociācija 5. USING COPULAS IN FINANCE

Latvijas Aktuāru Asociācija USING COPULAS IN FINANCE Cherubini U, Luciano E, Vecchiato W (2004) Copula Methods in Finance, Wiley, New York. Breymann W., Dias A., Embrechts P. (2003) Dependence Structures for Multivariate High-Frequency Data I Finance, Quantitative Finance 3(1) Embrechts P., Hoing A., Juri A.(2003) Using Copulae to bound the value-at-Risk for functions of dependent risks, Finance & Stochastics 7(2) Embrechts P., Hoing A., Juri A.(2003) Using Copulae to bound the value-at-Risk for functions of dependent risks, Finance & Stochastics 7(2) Fantazzini D. (2004) Copula’s Conditional Dependence Measures for Portfolio Management and value at Risk, RTN MicFinMa Summer School, Economics and Economtrics of MarketMicrostructure, Constance, June 7-11

Latvijas Aktuāru Asociācija 6. USING COPULAS IN INSURANCE

Latvijas Aktuāru Asociācija USING COPULAS IN INSURANCE Frees, E. W., and Valdez, E. A., “Understanding Relationships Using Copulas”, North American Actuarial Journal, V 2, No 1: p Bagarry M. (2006) Economic capital: a plea for the Student copula. 28th International Congress of Actuaries,

Latvijas Aktuāru Asociācija USING COPULAS IN INSURANCE Pettere G., Kollo T. Modeling claim size in time via copulas, Transactions of 28th International Congress of Actuaries, N 206, 2006, p Pettere G., Jansons V. Stochastic modelling of insurance liabilities, returned for second review in Scandinavian Actuarial Journal

Latvijas Aktuāru Asociācija USING COPULAS IN INSURANCE

Latvijas Aktuāru Asociācija THANKS ABOUT ATTENTION