1 Analyzing EEG Coupling Alois Schlögl University of Technology Graz, Austria COST B27 ENOC Joint WGs Meeting Swansea UK, 16-18 September 2006.

Slides:



Advertisements
Similar presentations
Ask a Question What are we testing? Step 1. Step 2 Research your topic. Look at the past work of others to see if this problem has already been tested.
Advertisements

Analysis of the time-varying cortical neural connectivity in the newborn EEG: a time-frequency approach Amir Omidvarnia, Mostefa Mesbah, John M. O’Toole,
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: The Linear Prediction Model The Autocorrelation Method Levinson and Durbin.
Informatics and Mathematical Modelling / Intelligent Signal Processing 1 Morten Mørup Decomposing event related EEG using Parallel Factor Morten Mørup.
Introduction Relative weights can be estimated by fitting a linear model using responses from individual trials: where g is the linking function. Relative.
HARMONICA – HOME PANEL (used for presentation purposes only)
Visualization of dynamic power and synchrony changes in high density EEG A. Alba 1, T. Harmony2, J.L. Marroquín 2, E. Arce 1 1 Facultad de Ciencias, UASLP.
Latent Causal Modelling of Neuroimaging Data Informatics and Mathematical Modeling Morten Mørup 1 1 Cognitive Systems, DTU Informatics, Denmark, 2 Danish.
Frequency Domain Causality Analysis Method for Multivariate Systems in Hypothesis Testing Framework Hao Ye Department of Automation, Tsinghua University.
Spectral Methods in EEG Analysis Steven L. Bressler Cognitive Neurodynamics Laboratory Center for Complex Systems & Brain Sciences Department of Psychology.
1 Def: Let and be random variables of the discrete type with the joint p.m.f. on the space S. (1) is called the mean of (2) is called the variance of (3)
1 Affective Learning with an EEG Approach Xiaowei Li School of Information Science and Engineering, Lanzhou University, Lanzhou, China
Single-Channel Speech Enhancement in Both White and Colored Noise Xin Lei Xiao Li Han Yan June 5, 2002.
New method of staging of Neuropathic foot due to Hansen's disease using foot pressure image signal processing and early detection of foot at risk of plantar.
Chapter 1 Introduction § 1.1 Problem and Analysis § 1.2 Data Engineering § 1.3 Scope § 1.4 Limitations of Course R. J. Chang Department of Mechanical Engineering.
Magnetic Resonance MSN 506 Notes. Overview Essential magnetic resonance Measurement of magnetic resonance Spectroscopic information obtained by magnetic.
General Linear Model & Classical Inference
1 Outstanding Collaborative Research Topics Professor J. Gruzelier MC Vice-Chair University of London, UK COST B27 ENOC Joint WGs Meeting Swansea UK,
Being Comoplex is Simpler: Event Related Dynamics Pedro Valdes-Sosa Eduardo Martínez-Montes Cuban Neurosciences Centre Wael El-Deredy School of Psychological.
Kalman filter-based PDC and dDTF measures for time-varying cortical connectivity analysis of newborn EEG A.H. Omidvarnia1, M. Mesbah1, M. S. Khlif1, J.M.
CSE291 Topics on Numeric Methods Spring 2014 Time and Place: 5-620PM, WF, Room CSE2109 Instructor: Chung-Kuan Cheng 1.
Institute for Human Computer Interfaces Institute for Computer Graphics and Vision WG1: Theoretical considerations COST Meeting Istanbul 2005 Graz University.
Qualitative and Quantitative Research Quantitative Deductive: transforms general theory into hypothesis suitable for testing Deductive: transforms general.
1 EEG Biofeedback in Fibromyalgia Syndrome Sadi Kayıran, M.D., Erbil Dursun, M.D., Nigar Dursun, M.D. Kocaeli University Physical Medicine & Rehabilitation.
T – Biomedical Signal Processing Chapters
Virtual Reality in Brain- Computer Interface Research F. Lee 1, R. Scherer 2, H. Bischof 1, G. Pfurtscheller 2 1) Institute for Computer Graphics and Vision.
Contrasts & Inference - EEG & MEG Himn Sabir 1. Topics 1 st level analysis 2 nd level analysis Space-Time SPMs Time-frequency analysis Conclusion 2.
Spectral analysis of multiple timeseries Kenneth D. Harris 18/2/15.
Surgical Planning Laboratory Brigham and Women’s Hospital Boston, Massachusetts USA a teaching affiliate of Harvard Medical School Functional Data Analysis.
Functional Brain Signal Processing: EEG & fMRI Lesson 5 Kaushik Majumdar Indian Statistical Institute Bangalore Center M.Tech.
EEG analysis during hypnagogium Petr Svoboda Laboratory of System Reliability Faculty of Transportation Czech Technical University
Joint Sparse Representation of Brain Activity Patterns in Multi-Task fMRI Data 2015/03/21.
1 Experimental Design, Contrasts & Inference - EEG & MEG Joseph Brooks (ICN) Maria Joao (FIL) Methods for Dummies 2007 Wellcome Department For Neuroimaging.
BEST 2010 BEST 2010 Results of the survey Kjetil Vrenne BEST Project Manager May 27 th, 2010 BEST Survey 2010 Results & Analyses Page 1.
Background 2 Outline 3 Scopus publications 4 Goal and a signal model 5Harmonic signal parameters estimation.
Multivariate Time Series Analysis
IPSIHAND AN EEG BASED BRAIN COMPUTER INTERFACE FOR MOTOR REHABILITATION.
Air Systems Division Definition of anisotropic denoising operators via sectional curvature Stanley Durrleman September 19, 2006.
2/17/2007DSP Course-IUST-Spring Semester 1 Digital Signal Processing Electrical Engineering Department Iran University of Science & Tech.
COST DC BMBS Meeting, Berlin, March COST Action B27 Electric Neuronal Oscillations and Cognition (ENOC)MONITORING PROGRESS REPORT ( –
Memory Systems: Implicit and Explicit M. Jay Polsgrove and Shannon Walden Q301, Fall 2000, Indiana University.
S CIENTIFIC M ETHOD. Step 1 of the Scientific Method is to __________.
GridEEG – User training
A Cortico-Muscular-Coupling based Single-Trial Detection in EEG-EMG based BCI for Personalized Neuro-Rehabilitation of Stroke Patients 1. Introduction.
Source-Resolved Connectivity Analysis
João Paulo Silva Cunha, Luís M. Paula, Virgílio F
Fourier coefficients (periodogram).
Steven L. Bressler, PhD Director, Cognitive Neurodynamics Laboratory
Hyperscanning Deception: EEG Analysis of the Lying Game
Edward Rhodes LoHCo Meeting Tucson, AZ December 14, 2005
3) determine motion and sound perceptions.
1.
رؤية مستقبلية لتطوير كلية الزراعة جامعة الفيوم
تکنیک های فروش. تکنیک های فروش آیا فروش همان بازاریابی است؟ نقطه شروع کانون توجه وسیله نقطه پایان سود آوری با تامین رضایت مشتری آمیزه بازاریابی نیازهای.
التأهيل التربوي المملكة العربية السعودية جامعة الملك عبدالعزيز
دانشگاه شهیدرجایی تهران
PSYC08 Review Questions II
Volume 69, Issue 3, Pages (February 2011)
تعهدات مشتری در کنوانسیون بیع بین المللی
A __________ for experiment success.
Perceptual Echoes at 10 Hz in the Human Brain
Dynamic Causal Modelling
بسمه تعالی کارگاه ارزشیابی پیشرفت تحصیلی
Volume 27, Issue 9, Pages (May 2017)
8.4 Control of Multivariable Systems
Influence of Multi-Grade Learning by Teaching
By Eni Sumarminingsih, Ssi, MM
Walk-Around Survey Individually:
Scientific Method.
Activity-based Collaborative Learning
Presentation transcript:

1 Analyzing EEG Coupling Alois Schlögl University of Technology Graz, Austria COST B27 ENOC Joint WGs Meeting Swansea UK, September 2006

2 Offer: –Methods for analysing EEG coupling using Multivariate autoregressive modelling –Coherency, PDC, DTF, phase, etc. –BioSig Asking for: –EEG data on interesting research topics –collaboration

3 Multivariate AutoRegressive (MVAR) models Multivariate: spatio-temporal correlation Estimators: –Levinson-Wiggins-Robinson (LWR): Multivariate Yule-Walker –Nutall-Strand method (multivariate burg method) –Vieira-Morf (multivariate geometric lattice) Software: –TSA-toolbox: MVAR.M –BioSig Schlögl (2006), Comparison of MVAR estimators, Signal Processing.

4

5 Coupling almost all the time in all frequencies !? Time-Frequency Analysis PDC (Hypothesis: PDC>0) 0 1 Subject K3 Left hand

6 Event-related PDC (Hypothesis: PDC != ref) Increases and decreases of coupling can be observed ! pdc<ref pdc>ref Subject K3 Left hand ref=pdc(0-3s)

7

8 MVAR estimators Comparison of ARFIT Multichannel Yule- Walker Multichannel Burg (Nutall-Strand) Schlögl, A. (2006) Comparison of Multivariate Autoregressive Estimators. Signal processing

9 Signal processing (II) Spectrum Coherence (absCOH, imagCOH) Partial coherence (pCOH) Partial directed coherence (PDC) Directed transfer function (DTF) Full-Frequency DTF (ffDTF) Directed coupling (DC) Phase

10 Auto/Crossspectra & Coherence

11 Imaginare und partiel Coherence

12 Directed transfer function DTF & partial directed coherence (PDC)

13 Thank You for the Attention References: –Schlögl, 2006, Comparison of Multivariate Autoregressive Estimators. Signal processing –Schlögl and Supp (in press), Progress In Brain Research Contact: Alois Schlögl

14 Coupling almost all the time in all frequencies !? DTF (Hypothesis: DTF>0) 0 1 Subject K3 Left hand

15 Increases and decreases of coupling can be observed ! pdc<ref pdc>ref Subject K3 Right hand ref=pdc(0-3s) Event-related PDC (Hypothesis: PDC != ref)