Water network-mediated, electron induced proton transfer in anionic [C 5 H 5 N·(H 2 O) n ]¯ clusters: Size-dependent formation of the pyridinium radical for n ≥ 3 Andrew F. DeBlase, Conrad Wolke, Gary H. Weddle, Kaye A. Archer, Kenneth D. Jordan, John T. Kelly, Gregory S. Tschumper, Nathan I. Hammer, and Mark A. Johnson International Symposium on Molecular Spectroscopy June 24, 2015
Proton Transfer Relays in CO 2 Reduction Simulations show water networks play a role in stabilizing pyridinium radical Bocarsly J. Am. Chem. Soc Bocarsly J. Am. Chem. Soc Pyridine catalyzes reduction of CO 2 to transportable fuels (i.e. formic acid) Experimental evidence for stabilization of pyridine radical by water network? CO 2 does bind to Py in the gas phase: Kamrath J. Am. Chem. Soc C-N stretch at 1283 cm -1 Musgrave J. Am. Chem. Soc Py
Introducing the Hydrated Electron: A Powerful Reducing Agent in Cluster Chemistry How do small H 2 O clusters bind an e - ? Hammer, et al. Science 2004 e.g. (H 2 O) n ¯ + CH 3 CN → OH¯∙(H 2 O) n-m-1 + m H 2 O + CH 3 CHN ∙ Py + (H 2 O) n ¯ → Py·(H 2 O) n ¯ → PyH·(H 2 O) n-1 ·OH¯ Can we use the hydrated electron to reduce Py to PyH (0) ? Beyer, M. K., et al. Angew. Chem. Int. Ed. 2003, 42, 5516.
Ion Optics 2m Flight Tube Wiley- McLaren TOF Reflectron Pulsed Valve Electron Gun MCP Detector Nd:YAG OPO/OPA The Jet Source Torr3 × 10 3 Torr e-e- Solenoid Ar h k IVR k evap A + ∙Ar n + h ν → A + ∙Ar n-m + m Ar 60 psi Ar with trace Py and H 2 O vapors
Py·(H 2 O) n Mass Spectrum m/z n = [Py∙(H 2 O) n ] ¯ [Py∙(H 2 O) n ] ¯∙ Ar Relative Abundance 2 Where is n = 2?
Py·(H 2 O) n [Py·(H 2 O) n ]¯ n = 2 n = 3 Rearrangement Coordinate Potential Energy Previous Explanation for Onset at n = 3 Desfrancois, et al. Electron. Spectrosc. 2000
Py·(H 2 O) 3 ¯ Electron Binding Energy (eV) Photoelectron Yield E Velocity Map Imaging Photoelecton Spectrum · Peak at 1.53 eV implies valence electron · Breadth implies VDE >> AEA · Not resolved for structural determination
More Complicated Potential Energy Surface VDE
[Py∙(H 2 O) n ]¯ Predissociation Yield n = 3 n = 4 Photon Energy (cm -1 ) n = 5 Photoelectrons Hydration Study
PyH∙(H 2 O) n-1 ∙OH¯ × 30 Calculated Intensity / Predissociation Yield Photon Energy (cm -1 ) n = 5 × 10× 3 Perfect agreement??? CH DD AD DD Bend Py AAD OH¯ bound 2 nd Shell AD free NH M06-2X/6-31+G** AAD AD Experiment and Theory
Comparison to Model Compounds PyH∙(H 2 O) 4 ∙OH¯ Relative Intensity Prediss. Yield PyH ∙ Py Photon Energy (cm -1 ) HOH bending (In a solid p-H 2 matrix) (FTIR of vapor) Golec, et al. J. Phys. Chem. A 2013 NIST chemistry webbook
Acknowledgements Johnson Lab (Yale) Zwier Lab (Purdue) McLuckey Lab (Purdue) Theory: Ken Jordan (U Pitt), Nathan Hammer (Ole Miss) Funding Agencies: DOE
Extra Slides
Electron Kinetic Energy (eV) NO ¯ Photoelectron Spectrum Continuum A-A- A hν pump Photoelectron Spectroscopy hν pump = EBE + EKE EBE EKE
Ion Packet r hν pump E e-e- r NO ¯ Image Velocity Map Imaging (VMI) μ -Metal Repeller (-) Ground Extractor (+) Flight Tube MCP Front MCP Back Phosphor CCD Camera
More Complicated Potential Energy Surface PyH·(H 2 O) 2 ·OH¯ Rearrangement Coordinate Potential Energy Py·(H 2 O) 3 v = 0 v = 1 VDE Py ¯ ·(H 2 O) 3 AEA X VDE = 1.66 eV (B3LYP/aug-cc-pVTZ ) VDE = 0.75 eV
Multiple Isomers? AD1 AD2 DD 4.v 93.6 meV 4.ii 22.4 meV DD AD1 AD2 AD1 AD2 DD 4.iv 64.7 meV AD1 AD2 DD 4.i 0.00 meV 4.iii 60.1 meV D1 D2 D3
IR-IR Double Resonance Ion Optics 2m Flight Tube Wiley- McLaren TOF Reacceleration Pulsed Valve Electron Gun MCP Detector Nd:YAG OPO/OPA Reflectron Nd:YAG OPO/OPA Laser 1:Laser 2: Photofragment signal from laser 2 dips when laser 1 is on resonance with blue isomer v = 0 v = 1 Scanning Fixed on Resonace
AD1 AD2 DD Photon Energy (cm -1 ) Probe * * D1 D2 D3 / Hole-burn Depletion Predissociation Yield Calc. Intensity