Chapter 9: Perceiving Color. Figure 9-1 p200 Figure 9-2 p201.

Slides:



Advertisements
Similar presentations
Chapter 9: Color Vision. Overview of Questions How do we perceive 200 different colors with only three cones? What does someone who is “color-blind” see?
Advertisements

5 The Perception of Color. Basic Principles of Color Perception Color is not a physical property but a psychophysical property  “There is no red in a.
Chapter 7: Perceiving Color
Chapter 9: Perceiving Color
Sensation and Perception - color.ppt © 2001 Dr. Laura Snodgrass, Ph.D.1 Color Perception The Physical and Psychological variables Grassman’s Laws of color.
Color Vision. Wavelength properties: ● Hue: psychological reaction to different wavelengths of light. (Basically the same thing as color). ● Different.
Perception Chapter 7: Color Vision Color Vision: The reason why humans perceive different colors in the environment is because of the manner in which the.
Midterm 2 March 9 th and 10 th Review Session Monday 7pm in this room (probably)
Vision How does our body construct our conscious visual experience?
Color.
1 Computational Vision CSCI 363, Fall 2012 Lecture 33 Color.
Color Vision Our visual system interprets differences in the wavelength of light as color Rods are color blind, but with the cones we can see different.
2002/02/05PSYC , Term 2, Copyright Jason Harrison, Psychophysics of colour perception Neurophysiology, psychophysics, and magic (or you only.
Ch 71 Sensation & Perception Ch. 7: Perceiving Color © Takashi Yamauchi (Dept. of Psychology, Texas A&M University) Main topics Trichromatic theory Opponent.
Ch 91 Sensation & Perception Ch. 9: Perceiving Color © Takashi Yamauchi (Dept. of Psychology, Texas A&M University) Main topics Functions of color Trichromatic.
Wavelength and Color Recall that light is electromagnetic radiation.
Read Land article for Thursday Test starts Wednesday of next week!!!!
Homework Set 8: Due Monday, Nov. 18 From Chapter 9: P10, P22, P26, P30, PH3, From Chapter 10: P4, P5, P9.
Read article by Land for Thursday Article by Anne Treisman coming up in about two weeks.
Lecture 6: Color in Design Neil H. Schwartz, Ph.D. Senior Seminar in Visualization.
COLOR PERCEPTION Physical and Psychological Properties Theories – Trichromatic Theory – Opponent Process Theory Color Deficiencies Color and Lightness.
Chapter 7: Color Vision How do we perceive color?.
Seeing Color. Visual Spectrum Light varies in intensity and wavelength.
Color Vision: Sensing a Colorful World
THEORIES OF COLOR VISION
Colour Vision I The retinal basis of colour vision and the inherited colour vision deficiencies Prof. Kathy T. Mullen McGill Vision Research (H4.14) Dept.
COLOR, FORM, AND DISTANCE. COLOR  The color of an object is determined by the wavelengths of light that object absorbs and reflects.  When you paint.
Module 12 Vision.  Transduction  conversion of one form of energy to another  in sensation, transforming of stimulus energies into neural impulses.
1 Perception and VR MONT 104S, Fall 2008 Lecture 7 Seeing Color.
PHYSIOLOGY OF COLOR VISION
The Visual System Dr. Kline FSU.
Mr. Koch AP Psychology Forest Lake High School
Perceiving and Recognizing Objects 4. Object Recognition Objects in the brain Extrastriate cortex: The region of cortex bordering the primary visual cortex.
© 2011 The McGraw-Hill Companies, Inc. Instructor name Class Title, Term/Semester, Year Institution Introductory Psychology Concepts Vision.
3.2 VISION 70% of your receptor cells are in your eyes taste and touch need direct contact where as sight and smell don’t Sight can be experienced from.
Chapter 7: Color perception Color is an important source of information independent of luminance (which we discussed extensively in Chapter 5). Color is.
Myers EXPLORING PSYCHOLOGY Module 14 Introduction to Sensation and Perception: Vision James A. McCubbin, PhD Clemson University Worth Publishers.
Chapter 9: Perceiving Color. What Are Some Functions of Color Vision? Color signals help us classify and identify objects. Color facilitates perceptual.
Do Now Try to label the diagram of the eye Use your textbook and the terms on the right to help you Optic nerve Pupil Lens Retina Vitreous Iris Cornea.
The Eye contains visual sensory receptors focuses light on the retina
Read article by Land for Thursday Article by Anne Treisman coming up in about two weeks.
Sensation Vision The Eye Theories Hearing The Ear Theories Other Senses Smell Taste Pain Gestalt Principles Perceptual Constancies Perception Basic Principles.
Let’s Get Visual!. What We See p. 125 Hue Visual experience specified by color names and related to the wavelength of light. Intensity Influences brightness.
Chapter 6 Section 2: Vision. What we See Stimulus is light –Visible light comes from sun, stars, light bulbs, & is reflected off objects –Travels in the.
Vision Module 13.
How do we see color? There is only one type of rod. It can only tell the intensity of the light, not its color. Because the cones can differentiate colors,
Chapter 7: Color perception
Color Vsion Sang Wook Hong.
Sensation and Perception: Vision Mr. Callens Psychology.
Mind, Brain & Behavior Wednesday February 19, 2003.
Ch 91 Sensation & Perception Ch. 9: Perceiving Color © Takashi Yamauchi (Dept. of Psychology, Texas A&M University) Main topics Functions of color Trichromatic.
Opponent Processes Lateral geniculate nucleus (LGN) has cells that are maximally stimulated by spots of light Visual pathway stops in LGN on the way from.
Chapter 9: Perceiving Color. Overview of Questions Why do we perceive blue dots when a yellow flash bulb goes off? What does someone who is “color-blind”
1 Computational Vision CSCI 363, Fall 2012 Lecture 32 Biological Heading, Color.
Psychological dimensions:
MODULE #13: VISION. Vision Transduction: transformation of stimulus energy (light, sound, smells, etc.) to neural impulses our brains can interpret. Our.
Vision. The Eye and Vision It’s the most complex and most important sense for humans. The vision “system” transfers light waves into neural messages that.
Lecture 6 - Chapter 7 Colour Vision Stimulus (what is colour?)
Review: Vision.
Color Vision by King Saud University Physiology Dept
Bell Work What occurs when experiences influence our interpretation of data? A. Selective attention B. Transduction C. Bottum-up processing D. Top-down.
Ch 6: The Visual System pt 3
Perceptual Constancies
Prof. Kathy T. Mullen McGill Vision Research (H4.14)
The Parts of the eye and vision
Color Vision and Color Constancy
Changing Light Waves to Neural Impulses
Vision. Vision Vision Our most dominating sense (Visual Capture). The eye is like a camera (it needs light).
Vision.
(Do Now) Journal What is psychophysics? How does it connect sensation with perception? What is an absolute threshold? What are some implications of Signal.
Presentation transcript:

Chapter 9: Perceiving Color

Figure 9-1 p200

Figure 9-2 p201

What Colors Do We Perceive? Basic colors are red, yellow, green, and blue Color circle shows perceptual relationship among colors Colors can be changed by: –Intensity which changes perceived brightness –Saturation - adding white to a color results in less saturated color

Figure 9-3 p201

Figure 9-4 p201

Color and Wavelength Color perception is related to the wavelength of light: –400 to 450nm appears violet –450 to 490nm appears blue –500 to 575nm appears green –575 to 590nm appears yellow –590 to 620nm appears orange –620 to 700nm appears red

Color and Wavelength - continued Colors of objects are determined by the wavelengths that are reflected Reflectance curves - plots of percentage of light reflected for specific wavelengths Chromatic colors or hues - objects that preferentially reflect some wavelengths –Called selective reflectance Achromatic colors - contain no hues –White, black, and gray tones

Figure 9-5 p202

Figure 9-6 p202

Color and Wavelength - continued Additive color mixture: –Mixing lights of different wavelengths –All wavelengths are available for the observer to see –Superimposing blue and yellow lights leads to white Subtractive color mixture: –Mixing paints with different pigments –Additional pigments reflect fewer wavelengths –Mixing blue and yellow leads to green

Figure 9-7 p202

Figure 9-8 p203

Trichromatic Theory of Color Vision Proposed by Young and Helmholtz (1800s) –Three different receptor mechanisms are responsible for color vision. Behavioral evidence: –Color-matching experiments Observers adjusted amounts of three wavelengths in a comparison field to match a test field of one wavelength.

Figure 9-9 p204

Physiological Evidence for the Theory Researchers measured absorption spectra of visual pigments in receptors (1960s). –They found pigments that responded maximally to: Short wavelengths (419nm) Medium wavelengths (531nm) Long wavelengths (558nm) Later researchers found genetic differences for coding proteins for the three pigments (1980s).

Figure 9-10 p205

Cone Responding and Color Perception Color perception is based on the response of the three different types of cones. –Responses vary depending on the wavelengths available. –Combinations of the responses across all three cone types lead to perception of all colors. –Color matching experiments show that colors that are perceptually similar (metamers) can be caused by different physical wavelengths.

Figure 9-11 p205

Figure 9-12 p206

Are Three Receptor Mechanisms Necessary for Color Vision? One receptor type cannot lead to color vision because: –absorption of a photon causes the same effect, no matter what the wavelength is. –any two wavelengths can cause the same response by changing the intensity. Two receptor types (dichromats) solve this problem but three types (trichromats) allow for perception of more colors.

Figure 9-13 p206

Figure 9-14 p207

Figure 9-15 p207

Color Deficiency Monochromat - person who needs only one wavelength to match any color Dichromat - person who needs only two wavelengths to match any color Anomalous trichromat - needs three wavelengths in different proportions than normal trichromat Unilateral dichromat - trichromatic vision in one eye and dichromatic in other

Figure 9-16 p208

Dichromatism There are three types of dichromatism: –Protanopia affects 1% of males and.02% of females Individuals see short-wavelengths as blue Neutral point occurs at 492nm Above neutral point, they see yellow They are missing the long-wavelength pigment

Dichromatism - continued Deuteranopia affects 1% of males and.01% of females –Individuals see short-wavelengths as blue –Neutral point occurs at 498nm –Above neutral point, they see yellow –They are missing the medium wavelength pigment

Dichromatism - continued Tritanopia affects.002% of males and.001% of females –Individuals see short wavelengths as blue –Neutral point occurs at 570nm –Above neutral point, they see red –They are most probably missing the short wavelength pigment

Figure 9-17 p209

Figure 9-18 p210

Opponent-Process Theory of Color Vision Proposed by Hering (1800s) –Color vision is caused by opposing responses generated by blue and yellow, and by green and red. Behavioral evidence: –Color afterimages and simultaneous color contrast show the opposing pairings –Types of color blindness are red/green and blue/yellow.

Figure 9-19 p210

Figure 9-20 p211

Opponent-Process Theory of Color Vision - continued Opponent-process mechanism proposed by Hering –Three mechanisms - red/green, blue/yellow, and white/black –The pairs respond in an opposing fashion, such as positively to red and negatively to green –These responses were believed to be the result of chemical reactions in the retina.

Figure 9-21 p211

Physiology Evidence for the Theory Researchers performing single-cell recordings found opponent neurons (1950s) –Opponent neurons: Are located in the retina and LGN Respond in an excitatory manner to one end of the spectrum and an inhibitory manner to the other

Figure 9-22 p212

Trichromatic and Opponent-Process Theories Combined Each theory describes physiological mechanisms in the visual system –Trichromatic theory explains the responses of the cones in the retina –Opponent-process theory explains neural response for cells connected to the cones further in the brain

Figure 9-23 p212

Figure 9-24 p212

Figure 9-25 p213

Color in the Cortex There is no single module for color perception –Cortical cells in V1, and V4 respond to some wavelengths or have opponent responses –These cells usually also respond to forms and orientations –Cortical cells that respond to color may also respond to white

Figure 9-26 p214

Color Constancy Color constancy - perception of colors as relatively constant in spite of changing light sources –Sunlight has approximately equal amounts of energy at all visible wavelengths –Tungsten lighting has more energy in the long-wavelengths –Objects reflect different wavelengths from these two sources

Figure 9-27 p215

Figure 9-28 p215

Color Constancy - continued Chromatic adaptation - prolonged exposure to chromatic color leads to receptors: – “ Adapting ” when the stimulus color selectively bleaches a specific cone pigment –Decreasing in sensitivity to the color Adaptation occurs to light sources leading to color constancy

Figure 9-29 p216

Color Constancy - continued Experiment by Uchikawa et al. –Observers shown sheets of colored paper in three conditions: Baseline - paper and observer in white light Observer not adapted - paper illuminated by red light; observer by white Observer adapted - paper and observer in red light

Figure 9-30 p216

Color Constancy - continued Experiment by Uchikawa et al. results showed that: –Baseline - green paper is seen as green –Observer not adapted - perception of green paper is shifted toward red –Observer adapted - perception of green paper is slightly shifted toward red Partial color constancy was shown in this condition

Color Constancy - continued Effect of surroundings –Color constancy works best when an object is surrounded by many colors Memory and color –Past knowledge of an object ’ s color can have an impact on color perception

Figure 9-31 p217

Lightness Constancy Achromatic colors are perceived as remaining relatively constant. –Perception of lightness: Is not related to the amount of light reflected by an object Is related to the percentage of light reflected by an object

Figure 9-32 p218

Lightness Constancy - continued The ratio principle - two areas that reflect different amounts of light look the same if the ratios of their intensities are the same This works when objects are evenly illuminated.

Lightness Perception Under Uneven Illumination Lightness perception under uneven illumination –Perceptual system must distinguish between: Reflectance edges - edges where the amount of light reflected changes between two surfaces Illumination edges - edges where lighting of two surfaces changes

Figure 9-33 p219

Lightness Perception Under Uneven Illumination - continued Sources of information about illumination: –Information in shadows - system must determine that edge of a shadow is an illumination edge System takes into account the meaningfulness of objects. Penumbra of shadows signals an illumination edge.

Figure 9-34 p219

Figure 9-35 p220

Color Is a Construction of the Nervous System Physical energy in the environment does not have perceptual qualities. –Light waves are not “ colored. ” Different nervous systems experience different perceptions. Honeybees perceive color which is outside human perception. –We cannot tell what color the bee actually “ sees. ”

Figure 9-38 p221

Figure 9-39 p222

Figure 9-40 p222

Infant Color Vision It is a complex problem to know what an infant really “ sees ” –Chromatic color –Brightness Bornstein et al (1976) –Habituation –Young infants have color vision

Figure 9-41 p223

Figure 9-42 p223

Figure 9-43 p223