Cooperative catalysis between metals and organocatalysis

Slides:



Advertisements
Similar presentations
CDC Reaction Involving α -C-H Bonds of Nitrogen in Amines 李南
Advertisements

1 Chiral Anion-Mediated Asymmetric Ion Pairing Chemistry Reporter: Zhi-Yong Han
Lewis Acid Activated Synthesis of Highly Substituted Cyclopentanes by the N- Heterocyclic Carbene Catalyzed Addition of Homoenolate Equivalents to Unsaturated.
Reporter: Yu Ting Huang Advising Prof: Ru Jong Jeng 1.
Cyclic Aminal of TsDPEN: Synthesis and Use as Asymmetric Organocatalysts Rina Soni, Silvia Gosiewska, Guy Clarkson, Martin Wills * Department of Chemistry,
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
Alkylation by Asymmetric Phase- Transfer Catalysis 张文全.
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
Palladium Catalyzed C-N Bond Formation Jenny McCahill
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
Organo-metal cooperative catalysis
Transition-Metal-Catalyzed Enantioselective Insertion of carbenes or carbenoids into the Heteroatom-Hydrogen Bond Reactions Xiaolei Lian
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
Recent Progress in sp 3 C-H Activation Catalyzed by Palladium Bo Yao.
何玉萍 Palladium(II)-Catalyzed Alkene Functionalization.
Career-in-review Keiji Maruoka Reporter: Li Chen Supervisor: Prof. David Zhigang Wang
THIOUREA-CATALYSED RING OPENING OF EPISULFONIUM IONS WITH INDOLE DERIVATIVES BY MEANS OF STABILIZING NON-COVALENT INTERACTIONS Nature Chem. 2012, 4,
N-Heterocyclic carbenes : A powerful tool in organic synthesis Thomas B UYCK PhD Student in Prof. Zhu Group, LSPN, EPFL Frontiers in Chemical Synthesis.
Chiral Concave N-Heterocyclic Carbenes 3 rd International Summer School “Supramolecular Systems in Chemistry and Biology“ Tim Reimers Kiel, GER.
Cinchona Alkaloids : Efficient Tunable Organocatalyts in Asymmetric Synthesis Antonin Clemenceau
Molecular and Gold Nanoparticles Supported N-Heterocyclic Carbene Silver(I) Complexes – Synthesis, Characterization and Catalytic Applications 學 生 :王趙增.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills Reorganised to highlight key areas to learn and understand. You are aware of the importance.
High-Oxidation-State Palladium Catalysis 报告人:刘槟 2010 年 10 月 23 日.
Total Synthesis of Communesins Jian-Zhou Huang
Transition metal catalyzed trifluoromethylation of unactivated alkene Presented by Ala Bunescu 30/04/2013.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
Mingli Li ( stored as THF solutions, blue-green for SmI 2 and yellow-green for YbI 2 ) Deoxygenation Reactions Reductions of Double Bonds.
1 Chiral Phosphoric Acids-Catalyzed Multi-Component Reactions for Synthesis of Structurally Diverse Nitrogenous Compounds Feng Shi Dec. 18th, 2010.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Atom-Economical and Sustainable C-N Bond Formation Reactions from Alcohols and N-Sources via Catalytic Hydrogen Transfer Reactions September 15th, 2015.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Rhodium-Catalyzed Chemo- and Regioselective Decarboxylative Addition of β- Ketoacids to Allenes: Efficient Construction of Tertiary and Quaternary Carbons.
The Work Of Pr Karl A. Scheidt Group Department of Chemistry, Northwestern UniVersity, Evanston.
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
金属催化的氧化反应 CYP 450TauD Acc. Chem. Res. 2007, 40, 522–531.
Light and Palladium Induced Carbonylation Reactions of Alkyl Iodides Mechanism and Development Pusheng Wang Gong Group Meeting April 12 th 2014.
Organic Pedagogical Electronic Network An Introduction to Catalytic Nitrene C–H Oxidation Ashley M. Adams, Justin Su, And J. Du Bois.
Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi,
Recycling the Waste: The Development of a Catalytic Wittig Reaction Angew. Chem. Int. Ed. 2009, 48, 6836 –6839.
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
Catalytic Synthesis of α,β- Unsaturated Carbonyl Derivatives 陈殿峰
Reporter: Qinglan Liu Supervisor: Prof. Yong Huang
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Cinchona Alkaloids : Efficient Bifunctional Organocatalyts in Asymmetric Synthesis Antonin Clemenceau Frontiers in Chemical Synthesis PhD in J. Zhu Group.
Selected examples of Domino Reactions in Total Synthesis Dagoneau Dylan Zhu Group Frontiers in Chemical Synthesis May 22 th, 2014.
Palladium-catalysed reactions involving isocyanides Reporter: Xinzheng Chen Supervisor: Prof. David Zhigang Wang
Robert Raja: Research Themes 2011/2  Cascade Reactions & Flow Chemistry  Vitamins  Agrochemicals  Fragrances and flavours  Food-additives Porous Molecular.
Dial-a-Molecule Reagentless Transformations? ‘In years, scientists will be able to deliver any desired molecule within a timeframe useful to the.
Photocatalysis based on TiO2
Catalytic Enantioselective Fluorination
Low-Valent Iron-Catalyzed Transformations of Unsaturated Hydrocarbons
Charette Group Literature Meeting
Émilie Morin Literature Meeting January 18th 2017
Presented by Arianne Hunter Sharma Lab Literature Meetings
Visible light photoredox-controlled reactions of N-radicals
Recent Development in Isocyanide-Based
GREEN CHEMISTRY Lab Safety Course Week II
Transition Metal Catalyzed Amide Bond Formation
Superbisor: Yong Huang
学堂讲座通知 化学系 Prof. Liming Zhang 加州大学Santa Barbara分校
Enantioselective Rh-catalyzed Aldehyde C-H Activation
Five Slides about Concurrent Tandem Catalysis
Michael J. Krische Presented by Louis-Philippe Beaulieu
Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
C-H Insertion of Rhodium-Carbene Using Diazo Compounds
Carbon Monoxide “Insertion”
Principles of Organic Synthesis in Pure Water
1. Palladium Catalyzed Organic Transformations
Presentation transcript:

Cooperative catalysis between metals and organocatalysis LITERATURE TALK Florian de Nanteuil EPFL 2011

Questions What is the difference in terms of reactivity between the MacMillan SOMO and Photoredox-catalysis? In the case of a cationic-gold complex, why the chiral-counteranion strategy is particularly interesting in order to induce chirality?

Sustainable Chemistry "meets the needs of the present without compromising the ability of future generations to meet their own needs.“1 Catalysis Renewable Feedstock Atom Economy Energy Efficiency Minimum Waste Design for Degradation Efficient Isolation Process Synthetic methods 1.United Nations. 1987. "Report of the World Commission on Environment and Development." General Assembly Resolution 42/187, 11 December 1987 Anastas, P. T.; Warner, J. C.; Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p.30

Sustainability in organic chemistry Atom Economy RedOx Economy E-Factor Function oriented Synthesis Metal Free Cascade/Domino Organocatalysis Direct Functionalisation Carbocyclisations Radical transformations C-C/C-H functionalisation Photoredox New technologies (MW, flow chem …)

Catalysis Catalytic amount Control 1836, Berzelius Lower Activation Energy = Enhancement of the rate of a reaction - Unblock a reaction Less waste Fewer atoms Less energy Catalytic amount Activity Regioselectivity Stereoselectivity Control

Compatibility of two catalysts New Synthetic methods One Operation New dimension & New Methodologies No Interaction Compatibility of two catalysts Dynamic Interaction BUT Favored Interaction with substrate

Cooperative catalysis ORGANOCATALYSIS ORGANOMETALLIC CATALYSIS COOPERATIVE CATALYSIS REVIEWS : Chem. Soc. Rev., 2009, 38, 2745-2755 Chem. Eur. J. 2010, 16, 9350 – 9365 Eur. J. Org. Chem. 2010, 2999–3025

Content Are all precatalysts present at the outset? no yes One pot reaction Is >1 catalytic mechanism required? no yes TANDEM CATALYSES Domino catalysis (cascade) Is a single catalyst/precatalyst used? The substrate is doing one catalytic cycle in which the two catalyst are involved = Dual/Cooperative catalysis (Rueping) no yes Orthogonal catalysis Is a chemical trigger used to transform the catalyst or change the mechanism The substrate is doing two or more catalytic cycle in which each catalyst is involved = Sequential catalysis (Rueping) no yes Auto-tandem catalysis Assisted-tandem catalysis D.E. Fogg, E.N. dos Santos, Coord. Chem. Rev. 2004, 248, 2365–2379 Rueping et al. Chem. Eur. J. 2010, 16, 9350 – 9365

Amine - Transition metal En Pd Cordova - 2006 Saicic - 2007 Saicic - 2009 I. Ibrahem , A. Córdova , Angew. Chem. Int. Ed. 2006 , 45 , 1952 –1956 F. Bihelovic , R. Matovic , B. Vulovic , R. N. Saicic , Org. Lett. 2007 , 9 , 5063 –5066 B. Vulovic , F. Bihelovic , R. Matovic , R. N. Saicic , Tetrahedron 2009 , 65 , 10485 –10494

Amine - Transition metal En Pd Tomioka – 2008 Breit – 2009 T. Sato , K. Tomioka , Heterocycles 2009 , 77 , 587 –593 . I. Usui , S. Schmidt , B. Breit , Org. Lett. 2009 , 11 , 1453 –1456 .

Amine - Transition metal En Au Wu - 2007 Kirsch - 2008 Q. Ding , J. Wu , Org. Lett. 2007 , 9 , 4959 –4962 J. T. Binder , B. Crone , T. T. Haug , H. Menz , S. F. Kirsch , Org. Lett. 2008 , 10 , 1025 –1028

Amine - Transition metal En Cu Dixon - 2008 Whang - 2009 T. Yang , A. Ferrali , L. Campbell , D. J. Dixon , Chem. Commun. 2008 , 2923 –2925 Z. Xu , P. Daka , I. Budik , H. Wang , F.-Q. Bai , H.-X. Zhang , Eur. J. Org. Chem. 2009 , 4581 –4585

Amine - Transition metal En In Cozzi - 2010 Cozzi - 2011 Capdevila M.G., Benfatti F., Zoli L., Stenta M., Cozzi P. G. Chem. Eur. J. 2010, 16, 11237 Sinisi R., Vita M. V., Gualandi A., Emer E., Cozzi P. G. Chem. Eur. J. 2011, ASAP

Amine - Transition metal En Cu Nishibayashi – 2010/2011 Ikeda M., Miyake Y., Nishibayashi Y. Angew. Chem. Int. Ed. 2010, 49, 7289 Yoshida A., Ikeda M., Hattori G., Miyake Y., Nishibayashi Y. Org. Lett. 2011, 13, 592

Amine – Oxidant metal MacMillan – SOMO catalysis En Ox TJ. J. Devery III, J. C. Conrad, D. W. C. MacMillan, R. A. Flowers II Angew. Chem. Int. Ed. 2010, 49, 6106-6110

Amine – Oxidant metal Huang - 2010 En Ox Xie J., Huang Z. Z., Chem. Commun. 2010, 46, 1947

Amine – Photoactivated metal En M* MacMillan – Photoredox catalysis 2008 2009 2010 D. A. Nicewicz , D. W. C. MacMillan , Science 2008 , 322 , 77 –80 D. A. Nagib , M. E. Scott , D. W. C. MacMillan , J. Am. Chem. Soc. 2009 , 131 , 10875 –10877 H.-W. Shih, M. N. Vander Wal, R. L. Grange, D. W. C. MacMillan J. Am. Chem. Soc. 2010, 132, 13600-13603

Amine – Photoactivated metal En M* MacMillan – Photoredox catalysis Ru and Ir catalysts pictures from original document

Brønsted base – Lewis acid LA Jørgensen – 2005 Dixon – 2009 Kobayashi – 2008 K. R. Knudsen , K. A. Jørgensen , Org. Biomol. Chem. 2005 , 3 , 1362 – 1364 T. Yang , A. Ferrali , F. Sladojevich , L. Campbell , D. J. Dixon , J. Am. Chem. Soc. 2009 , 131 , 9140 – 9141 S. B. J. Kan , R. Matsubara , F. Berthiol , S. Kobayashi , Chem. Commun. 2008 , 6354 – 6356 .

Lewis base – Transition metal LB: M Krische – 2003 Krische – 2008 Total synthesis of Quinine B. G. Jellerichs , J.-R. Kong , M. J. Krische , J. Am. Chem. Soc. 2003 , 125 , 7758 –7759 P. Webber , M. J. Krische , J. Org. Chem. 2008 , 73 , 9379 –9387

Lewis base – Transition metal LB: M Wu – 2009 S. Ye , J. Wu , Tetrahedron Lett. 2009 , 50 , 6273 –6275 

NHC– Transition metal Scheidt – 2010 C: Mg Raup D., Cardinal-David B., Holte D., Scheidt K. A. Nat. Chem. 2010, 2, 766

NHC– Transition metal Gois – 2011 C: Fe Reddy R. S., Rosa J. N., Veiros L. F., Caddick S., Gois P. M. P. Org. Biomol. Chem. 2011, 9, 3126

Brønsted acid– Rhodium carbene AH Rh Krische – 2006 V. Komanduri , M. J. Krische , J. Am. Chem. Soc. 2006 , 128 , 16448 –16449 .

Brønsted acid– Rhodium carbene AH Rh Gong, Hu – 2008 W.-H. Hu , X.-F. Xu , J. Zhou , W.-J. Liu , H.-X. Huang , J. Hu , L.-P. Yang , L.-Z. Gong , J. Am. Chem. Soc. 2008 , 130 , 7782 –7783 .

Brønsted acid– Rhodium carbene AH Rh Hu – 2008 X.-F. Xu , J. Zhou , L.-P. Yang , W.-H. Hu , Chem. Commun. 2008 , 6564 –6566

Brønsted acid– Transition metal AH M Rueping – 2007 M. Rueping , A. P. Antonchick , C. Brinkmann , Angew. Chem. Int. Ed. 2007 , 46 , 6903 –6906

Brønsted acid– Transition metal AH M Arndsten – 2009 Y. Lu , T. C. Johnstone , B. A. Arndtsen , J. Am. Chem. Soc. 2009 , 131 , 11284 –11285 HIGHLIGHT : Pedro de Armas, David Tejedor, Fernando García-Tellado Angew. Chem. Int. Ed. 2010, 49, 1013 – 1016

Brønsted acid– Transition metal AH M Xiao – 2008 Rueping – 2011 Li C., Wang C., Villa-Marcos B., Xiao J. J. Am. Chem. Soc. 2008, 130, 14450 Magnus Rueping, René M. Koenigs, Chem. Commun., 2011, 47, 304-306

Brønsted acid– Transition metal AH M Beller – 2011 Zhou S., Fleischer S., Junge K., Beller M. Angew. Chem. Int. Ed. 2011, 50, 5120

Brønsted acid– Transition metal AH M Toste – 2007 G. L. Hamilton , E. J. Kang , M. Mba , F. D. Toste , Science 2007 , 317 , 496 –499 .

Brønsted acid– Transition metal AH M List – 2007 S. Mukherjee , B. List , J. Am. Chem. Soc. 2007 , 129 , 11336 –11337

Brønsted acid– Transition metal AH M Toste – 2008 G. L. Hamilton, T. Kanai, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 14984–14985.

Brønsted acid– Transition metal AH M List – 2010 S. Liao, B. List, Angew. Chem. 2010, 122, 638–641; Rueping et al. Chem. Eur. J. 2010, 16, 9350 – 9365

Perspectives Attractive concept Simplifying catalyst evaluation Reactive intermediates present in low concentration Lot of combinations that have to be discovered - Mechanistic studies

Thank you for your attention

Questions 1: What is the difference of reactivity between the MacMillan SOMO and Photoredox-catalysis? In the case of a cationic-gold complex, why the chiral-counteranion strategy is particularly interesting in order to induce chirality?

Amine – Oxidant metal MacMillan – SOMO catalysis En Ox TJ. J. Devery III, J. C. Conrad, D. W. C. MacMillan, R. A. Flowers II Angew. Chem. Int. Ed. 2010, 49, 6106-6110

Amine – Photoactivated metal En M* MacMillan – Photoredox catalysis Ru and Ir catalysts pictures from original document

Questions What is the difference of reactivity between the MacMillan SOMO and Photoredox-catalysis? In the case of a cationic-gold complex, why the chiral-counteranion strategy is particularly interesting in order to induce chirality?

Brønsted acid– Transition metal AH M Toste – 2007 G. L. Hamilton , E. J. Kang , M. Mba , F. D. Toste , Science 2007 , 317 , 496 –499 .