Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu
Motivation:
Controlled preparation of high-v states of H 2 Test of QED in molecules Test the advanced ab initio calculations of Pachucki & coworkers Breakthrough in molecular theory (Relativistic effects and QED)
Motivation: Energy contribution of H 2 ground state + E rel + E QED E = E BO + E ad + E nad nonrelativistic cm -1 J. Komasa,K. Pachucki, et. al. J. Chem. Theory Comput. 7 (2011) 3105.
+ E rel + E QED E = E BO + E ad + E nad nonrelativistic cm -1 Motivation: variation by the vibrational quantum number v J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.
Test of QED = Test of the Standard Model Electromagnetic (QED): D 0 ~ 4.5 eV Weak < eV Strong < eV Gravity ~ eV
Background J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10),
Background J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10),
H 2 +S( 1 S) H2SH2S 2-photon photolysis of H 2 S
J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), H 2 +S( 1 S) H2SH2S H2H2 2-photon photolysis of H 2 S
Excitation scheme; multiple photons J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10),
Present work : H 2 (high-v) from H 2 S molecule J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), H2SH2S H 2 (X, v=10-14), S( 1 D) H 2 (EF, v=2-5)
Present work : H 2 (high-v) from H 2 S molecule J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), H2SH2S H 2 (X, v=10-14), S( 1 D) H 2 (EF, v=2-5) Production laser Probe laser Ionization laser
Present work: Setup
Present work: Energy scheme
206nm
Preliminary results Overview scan
High-resolution spectrum of H 2 ground state high vibrational quantum number Overview scan X(v=12)-F(v=3) Q1 transition Preliminary results
H + signal width/MH z Groun dExcitedA(J)Theorydiff (3)F2(3)Q(3) (5)F2(5)Q(5) (6)F1(6)Q(6) (0)F3(0)Q(0) (1)F3(1)Q(1) (2)F3(2)Q(2) (3)F3(3)Q(3) (1)F3(3)S(1) (4)E1(4)Q(4) (2)E2(4)S(2) (10)E0(10)Q(10) (4)E2(4)Q(4) (5)F2(7)S(5) Preliminary results: summary
H + signal width/MH z Groun dExcitedA(J)Theorydiff (3)F2(3)Q(3) (5)F2(5)Q(5) (6)F1(6)Q(6) (0)F3(0)Q(0) (1)F3(1)Q(1) (2)F3(2)Q(2) (3)F3(3)Q(3) (1)F3(3)S(1) (4)E1(4)Q(4) (2)E2(4)S(2) (10)E0(10)Q(10) (4)E2(4)Q(4) (5)F2(7)S(5) Preliminary results: summary
D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) Preliminary results: X(v=12) - F(v=3)
D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) Expected accuracy: cm -1 Theory: cm -1 Preliminary results: X(v=12) - F(v=3)
Conclusions and outlook Comfirm the previous work and reassign the transitions High resolution spectroscopy of high vibrational state of H 2 by photodissociation H 2 S molecule Test of QED theory of ground state vibrational level energies to v=12 Improve the S/N ratio Assign the unknown transitions Extend to the highest vibrational state (v=14)
Is H 2 O has the same phenomenon?
Wim Ubachs Edcel Salumbides
Preliminary results: Imaging molecular beam linearly polarized laser E field
Preliminary results: Imaging molecular beam linearly polarized laser E field
H 2 dissociation energy Experiment: Liu et al., J. Chem. Phys. 130, (2009) Calculation: Piszczatowski et al., J. Chem. Theory Comput. 5, 3039 (2009)
+ E rel + E QED E = E BO + E ad + E nad nonrelativistic cm -1 J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) Motivation: variation by the vibrational quantum number v
Motivation: QED theory Test of Quantum electrodynamics (QED) theory in Bond state. J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.
QED: most accurate theory Free-particle QED electron anomalous magnetic moment : PRL 100, (2008) electron anomalous magnetic moment : PRL 100, (2008) exp-theory : 7.7 x ( from PRL 106, (2011) ) exp-theory : 7.7 x ( from PRL 106, (2011) ) Bound state QED Hydrogen atom; Hydrogen-like Uranium ion (U 91+ ) Helium atom: Kandula, PRL 10, (2010); van Rooij, Science 333, 196 (2011) HD + molecular ion: J. Koelemeij poster Hydrogen molecule: this talk QED calculations: Corrections scale to ( Z ) → power series expansion in ( ) n or 1/( Z ) n with proton number Z and fine structure constant
Background
Results: high-J states in X 1 g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, (2011) Uncertainty estimate (MHz) Line fitting 5 Residual Doppler <1 I 2 calibration 5 etalon nonlinearity 5 ac-Stark shift 50 dc-Stark shift 10 PDA chirp 150 Statistical 30 Total 160 or cm -1 or cm -1 or relative uncertainty 5 x 10 -8
Results: low-v in X 1 g + state of Hydrogen molecule Uncertainty estimate (MHz) Ac-Stark < 0. 4 Dc-Stark < 0. 1 Frequency chirp 2.0 Frequency calibration 0.1 Residual 1st-order Doppler H2 0.5 HD 0.3 HD 0.3 D2 0.3 D nd-order Doppler < 0. 1 Pressure shift < 0. 1 Statistics H2 1.5 HD 1.6 HD 1.6 D2 1.9 D2 1.9 Total Uncertainty H2 2.6 Total Uncertainty H2 2.6 HD 2.6 HD 2.6 D2 2.8 D2 2.8 M. Niu, et. al. J. Mol. Spectr. 300, (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, (2013)
Preliminary results D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) Determine energies of X highly vibrational quantum states
Some results: Two color scan
Some results: X12-F3 Q2
Some results: X11-F2 Q3
X12-F3 Q1
Some results: Image
Experiment: Chirp Acousto-optic modulator(AOM) Fiber link and coupler Voltage controlled oscillator High power amplifier
Experiment: Matlab program for chirp 47 M. S. Fee, et. al. Physical Review A 1992, 45 (7), K. S. E. Eikema, et. al. Physical Review A 1997, 55 (3),
Motivation: variation by the rotational quantum number J + E rel + E QED E = E BO + E ad + E nad nonrelativistic cm -1 J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.
Fifth-force search Yukawa potential (Phenomenological) Hideki Yukawa Extra hadron-hadron interaction strength: range: Insert in molecular wave function
How do we measure?
Results: high-J states in X 1 g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, (2011)
Results: high-J states in X 1 g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, (2011) Uncertainty estimate (MHz) Line fitting 5 Residual Doppler <1 I 2 calibration 5 etalon nonlinearity 5 ac-Stark shift 50 dc-Stark shift 10 PDA chirp 150 Statistical 30 Total 160 or cm -1 or relative uncertainty 5 x 10 -8
Determine energies of X, v=0 rotational quantum states E.J. Salumbides, et. al. Phys. Rev. Lett. 107, (2011) Results: high-J states in X 1 g +, v=0 of H 2 molecule
M. Niu, et. al. J. Mol. Spectr. 300, (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, (2013) Results: fundamental vibrational splitting in X 1 g + state of Hydrogen molecule
M. Niu, et. al. J. Mol. Spectr. 300, (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, (2013) Uncertainty estimate (MHz) AC-Stark < 0. 4 DC-Stark < 0. 1 Frequency chirp 2.0 Frequency calibration 0.1 Residual 1st-order Doppler H2 0.5 HD 0.3 D nd-order Doppler < 0. 1 Pressure shift < 0. 1 Statistics H2 1.5 HD 1.6 D2 1.9 Total Uncertainty H2 2.6 HD 2.6 D2 2.8 or relative uncertainty 1 x 10 -9
M. Niu, et. al. J. Mol. Spectr. 300, (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, (2013) Determine energy of on fundamental ground state vibration band (v = 0-1) Results: fundamental vibrational splitting in X 1 g + state of Hydrogen molecule
Fifth force constraints : EJS, Koelemeij, Komasa, Pachucki, Eikema, Ubachs, Phys Rev D 87, (2013). Phys Rev D 87, (2013).
Preliminary results D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.