Chapter 2 The First Law Unit 1 work Spring 2009. Thermodynamics Thermodynamics, the study of the transformations of energy, enables us to discuss all.

Slides:



Advertisements
Similar presentations
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
Advertisements

First Law of Thermodynamics
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY
Chapter 7: Thermochemistry
Thermodynamics: The First Law 자연과학대학 화학과 박영동 교수 Classical thermodynamics.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 5. Heat - the transfer of thermal energy between two bodies that are at different temperatures Energy Changes in Chemical Reactions.
Chapter 6 Energy and Chemical Reactions. Macroscale Kinetic Energy energy that something has because it is moving Potential Energy energy that something.
Energy Relationships in Chemical Reactions
Prentice-Hall © 2007 General Chemistry: Chapter 7 Slide 1 of 58 CHEMISTRY Ninth Edition GENERAL Principles and Modern Applications Petrucci Harwood Herring.
Energy and Heat.
Therme = Heat Dynamikos = work Thermodynamics = flow of heat THERMODYNAMICS Thermodynamics is a branch of science that deals with the study of inter conversion.
Chapter 21 Basic Concepts of Thermodynamics Thermodynamics is the study of transformations of energy System and surroundings –the system is the part of.
Chapter 7: Energy and Chemical Change
CHEMISTRY Matter and Change
Thermodynamics. Terms used frequently in thermodynamics System Surroundings Isolated system Closed system Open system State of a system State variables.
AP Chapter 5 Thermochemistry HW:
Energy, Enthalpy Calorimetry & Thermochemistry
Energy and Heat. Definitions Thermochemistry: the study of the energy changes that accompany chemical reactions Energy: A property of matter describing.
The study of the heat flow of a chemical reaction or physical change
Thermodynamics: Energy Relationships in Chemistry The Nature of Energy What is force: What is work: A push or pull exerted on an object An act or series.
Unit 13: Thermochemistry Chapter 17 By: Jennie Borders.
Section 10.1 Energy, Temperature, and Heat 1.To understand the general properties of energy 2.To understand the concepts of temperature and heat 3.To understand.
Section 10.1 Energy, Temperature, and Heat 1.To understand the general properties of energy 2.To understand the concepts of temperature and heat 3.To understand.
Chapters 5 and 19.  Energy = capacity to do work  Kinetic = energy of motion  Potential = energy of position relative to other objects  Work = energy.
ERT 108 Physical Chemistry The First Law of Thermodynamics by Miss Anis Atikah binti Ahmad
THE NATURE OF ENERGY AND HEAT Topic 5.1. THERMOCHEMISTRY The study of heat released or required by chemical reactions Fuel is burnt to produce energy.
General Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology.
Prentice-Hall © 2002General Chemistry: Chapter 7Slide 1 of 50 Chapter 7: Thermochemistry Philip Dutton University of Windsor, Canada Prentice-Hall © 2002.
Energy and Chemical Reactions Chapter Energy the science of heat and work is called thermodynamics Kinetic energy thermal, mechanical, electric,
Thermodynamics They study of energy and its transformations.
THERMOCHEMISTRY The study of heat released or required by chemical reactions Fuel is burnt to produce energy - combustion (e.g. when fossil fuels are burnt)
By HANN ILYANI ZULHAIMI ERT 108 PHYSICAL CHEMISTRY THE FIRST LAW OF THERMODYNAMICS.
Unit 13: Thermochemistry Chapter 17 By: Jennie Borders.
Chapter 5: thermochemistry By Keyana Porter Period 2 AP Chemistry.
Thermochemistry! AP Chapter 5. Temperature vs. Heat Temperature is the average kinetic energy of the particles in a substance. Heat is the energy that.
Thermochemistry Chapter 6 Thermochemistry. Thermochemistry Energy The ability to do work or transfer heat.  Work: Energy used to cause an object that.
An Introduction into Thermodynamics Advanced Chemistry Ms. Grobsky.
Thermochemistry. Energy Energy is the ability to do work or transfer heat. – Energy used to cause an object that has mass to move is called work. – Energy.
Thermochemistry Chapter 6 Dr. Ali Bumajdad.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Presentation.
Energy and Physical Changes Energy is transferred during both chemical and physical changes, most commonly in the form of heat.
1 Chemical thermodynamics. The first law of thermodynamics. Plan 1 The basic concepts of thermodynamics 2. First law of thermodynamics. Heat (Q) and Work.
Thermal Chemistry. V.B.3 a.Explain the law of conservation of energy in chemical reactions b.Describe the concept of heat and explain the difference between.
(VB-VA)I = (VB-VA)II = (VB-VA)III
Chapter 6 – Energy. Types of Systems Energy First Law of thermodynamics: The energy of the universe is constant (i.e. energy is neither created nor destroyed)
First Law of Thermodynamics
Thermochemistry Chapter 6 (semester ) 6.1 The Narure of Energy and Types of Energy 6.2 Energy Changes in Chemical Recations 6.3 Introduction to Thermodynamics.
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
THERMOCHEMISTRY Study of heat change in chemical reactions.
1 Chepter 2. The First Law : the concepts The basic concepts. system : the part of the world in which we have a special interest surroundings : around.
Thermodynamics Chapter 15. Part I Measuring Energy Changes.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1. Definitions: recall physics 2  Energy (E):  The ability to do work; measured in Joules (J)  Work:  Amount of energy applied or transferred over.
Chapter 51 Thermochemistry. 2 The Nature of Energy From Physics: Force – a kind of push or pull on an object. Energy – the capacity to do work. Work –
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
ERT 108/3 PHYSICAL CHEMISTRY FIRST LAW OF THERMODYNAMICS Prepared by: Pn. Hairul Nazirah Abdul Halim.
Section 10.1 Energy, Temperature, and Heat 1.To understand the general properties of energy 2.To understand the concepts of temperature and heat 3.To understand.
THEME: Theoretic bases of bioenergetics. LECTURE 6 ass. prof. Yeugenia B. Dmukhalska.
Chapter 3 The Second Law Unit 1 The second law of thermodynamics and Entropy Spring 2009.
Chemical Thermodynamics Lecture 1. Chemical Thermodynamics Prepared by PhD Halina Falfushynska.
Energy. Energy is classified: Kinetic energy – energy of motion Potential energy – energy of position Both energies can be transferred from one object.
Define internal energy, work, and heat. internal energy: Kinetic energy + potential energy Heat: energy that moves into or out of the system because of.
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
Chapter 2 The First Law Unit 1 work
Thermodynamics Chander Gupta and Matt Hagopian. Introduction into Thermo Thermodynamics is the study of energy and its transformations Thermochemistry.
Chapter The Second Law Unit 1 The second law of thermodynamics and Entropy Spring 2013.
THERMOCHEMISTRY THERMODYNAMICS.
Presentation transcript:

Chapter 2 The First Law Unit 1 work Spring 2009

Thermodynamics Thermodynamics, the study of the transformations of energy, enables us to discuss all these matters quantitatively and to make useful predictions.

The basic concepts If matter can be transferred through the boundary between the system and its surroundings the system is classified as open. If matter cannot pass through the boundary the system is classified as closed. Both open and closed systems can exchange energy with their surroundings. An isolated system is a closed system that has neither mechanical nor thermal contact with its surroundings.

Endothermic and Exothermic An exothermic process is a process that releases energy as heat into its surroundings. All combustion reactions are exothermic.energy An endothermic process is a process in which energy is acquired from its surroundings as heat. An example of an endothermic process is the vaporization of water. Isothermal : system remains at the same temperature.

Heating- thermal motion Heating is the transfer of energy that makes use of disorderly molecular motion. The disorderly motion of molecules is called thermal motion. The thermal motion of the molecules in the hot surroundings stimulates the molecules in the cooler system to move more vigorously and, as a result, the energy of the system is increased. When a system heats its surroundings, molecules of the system stimulate the thermal motion of the molecules in the surroundings. random motion

Work – orderly motion When a system does work, it stimulates orderly motion in the surroundings. For instance, the atoms shown here may be part of a weight that is being raised. The ordered motion of the atoms in a falling weight does work on the system.

The internal energy In thermodynamics, the total energy of a system is called its internal energy, U. The internal energy is the total kinetic and potential energy of the molecules in the system ∆U the change in internal energy when a system changes from an initial state i with internal energy U i to a final state f of internal energy U f :

The internal energy The internal energy is a state function. Its value depends only on the current state of the system and is independent of how that state has been prepared. The internal energy is an extensive property. Internal energy, heat, and work are all measured in the same units, the joule (J).

First Law of thermodynamics The internal energy of an isolated system is constant. w work done on a system, qenergy transferred as heat to a system, ∆Uresulting change in internal energy,

The sign convention in thermodynamics The ‘acquisitive convention’, w > 0 or q > 0 if energy is transferred to the system as work or heat and w < 0 or q < 0 if energy is lost from the system as work or heat. We view the flow of energy as work or heat from the system’s perspective.

Illustration 2.1 The sign convention in thermodynamics If an electric motor produced 15 kJ of energy each second as mechanical work and lost 2 kJ as heat to the surroundings, then the change in the internal energy of the motor each second is U = -2 kJ – 15 kJ = -17 kJ

Illustration 2.1 The sign convention in thermodynamics Suppose that, when a spring was wound, 100 J of work was done on it but 15 J escaped to the surroundings as heat. The change in internal energy of the spring is  U = 100 kJ – 15 kJ = +85 kJ

Expansion work

Types of work

Free expansion expansion against zero opposing force, p ex = 0 Free expansionw = 0 No work is done when a system expands freely. Expansion of this kind occurs when a system expands into a vacuum.

Expansion against constant pressure Irreversible The external pressure is constant throughout the expansion The work done by a gas when it expands against a constant external pressure, p ex, is equal to the shaded area in this example of an indicator diagram.

Example 2.1 Calculating the work of gas production Calculate the work done when 50 g of iron reacts with hydrochloric acid in (a)a closed vessel of fixed volume, (b)an open beaker at 25°C.

Example 2.1 Calculating the work of gas production Fe(s) + 2 HCl(aq) → FeCl 2 (aq) + H 2 (g), (a)the volume cannot change, so no expansion work is done and w = 0.expansion work (b)the gas drives back the atmosphere and therefore w = −p ex ∆V.gas

Self Test 2.1 Calculate the expansion work done when 50 g of water is electrolysed under constant pressure at 25°C.

Reversible expansion A reversible change in thermodynamics is a change that can be reversed by an infinitesimal modification of a variable. To achieve reversible expansion we set p ex equal to p at each stage of the expansion. In practice, this equalization could be achieved by gradually removing weights from the piston so that the downward force due to the weights always matched the changing upward force due to the pressure of the gas.

Isothermal reversible expansion

The work done by a perfect gas when it expands reversibly and isothermally is equal to the area under the isotherm p = nRT/V. The work done during the irreversible expansion against the same final pressure is equal to the rectangular area shown slightly darker. Note that the reversible work is greater than the irreversible work.

A sample consisting of 1.00 mol of the molecules in air is expanded isothermally at 25  C from 24.2 dm 3 to 48.4dm 3 (a) reversibly, (b) against a constant external pressure equal to the final pressure of the gas, and (c) freely (against zero external pressure). For the three processes calculate the work w. (a) Isothermal reversible expansion

A sample consisting of 1.00 mol of the molecules in air is expanded isothermally at 25  C from 24.2 dm 3 to 48.4dm 3 (a) reversibly, (b) against a constant external pressure equal to the final pressure of the gas, and (c) freely (against zero external pressure). For the three processes calculate the work w. (b) Against a constant pressure (irreversible expansion) p ex can be computed from the perfect gas law

Chapter 2 The First Law Unit 2 Heat Spring 2009

At constant volume  U=q V The energy supplied to a constant-volume system as heat (q) is equal to the change in its internal energy (  U).

Measurement of heat Calorimetry Study of heat transfer during physical and chemical process Calorimeter A device for measuring energy transfer as heat

Measurement of heat at constant volume Adiabatic bomb calorimeter C calorimeter constant The calorimeter constant can be measured electrically by passing a constant current, I, from a source of known potential difference, V, through a eater for a known period of time, t

Illustration 2.2 The calibration of a calorimeter If we pass a current of 10.0 A from a 12 V supply for 300 s, the energy supplied as heat is q = (10.0 A) × (12 V) × (300 s) = 3.6 × 10 4 A V s = 36 kJ because 1 A V s = 1 J. If the observed rise in temperature is 5.5 K, then the calorimeter constant is C = (36 kJ)/(5.5 K) = 6.5 kJ K −1.

Heat Capacity Heat CapacityC The internal energy of a system increases as the temperature is raised; this graph shows its variation as the system is heated at constant volume. The slope of the tangent to the curve at any temperature is the heat capacity at constant volume at that temperature. Note that, for the system illustrated, the heat capacity is greater at B than at A.

Heat Capacity The internal energy of a system varies with volume and temperature, as shown here by the surface. The variation of the internal energy (  U) with temperature at one particular constant volume is illustrated by the curve drawn parallel to T. The slope of this curve at any point is the partial derivative (∂U/∂T) V = C V.

Heat Capacity The heat capacity of a monatomic perfect gas can be calculated by inserting the expression for the internal energy U m = U m (0) + 3 / 2 RT, The numerical value is J K −1 mol −1

Heat Capacity Molar heat capacity at constant volume heat capacity per mole of material, intensive property Specific heat capacity (specific heat) n: number of moles C v,m unit: J K -1 mol -1 m: mass of material C v,s unit: J K -1 g -1

Heat in constant volume process The heat capacity is used to relate a change in internal energy to a change in temperature of a constant-volume system. dU = C V d T (at constant-volume) If the heat capacity is independent of temperature over the range of interest, a measurable change of temperature,, bings about a measurable increase of internal energy,  U  U = C V  T (at constant-volume)

Heat in constant volume process At constant volume, q V  U q V = C V  T This relation provides a simple way of measuring the heat capacity of sample: The ratio of the energy transferred as heat to the temperature rise it causes (q v /  T)is the constant- volume heat capacity of the sample

Chapter 2 The First Law Unit 3 enthalpy Spring 2009

Enthalpy H = U + PV P: pressure of the system V: volume of the system  H is a state function The change in enthalpy between two states is independent of the path between them.

Enthalpy The change in enthalpy is equal to the energy supplied as heat at constant pressure.

 At constant pressure  H = q P the heating occurs at constant pressure by writing dp = 0pressure When a system is subjected to a constant pressure, and only expansion work can occur, the change in enthalpy is equal to the energy supplied as heat.

Measurement of enthalpy change Calorimeter Isobaric calorimeter A calorimeter for studying processes at constant pressure Adiabatic flame calorimeter may be used to measure ∆T when a given amount of substance burns in a supply of oxygen

Measurement of enthalpy change  H and  U for solid and phase Solids and liquids have small molar volumes, for them pV m is so small that the molar enthalpy and molar internal energy are almost identical. H m = U m + pV m ≈ U m for condense phase If a process involves only solids or liquids, the values of ∆H and ∆U are almost identical. Physically, such processes are accompanied by a very small change in volume, the system does negligible work on the surroundings when the process occurs, so the energy supplied as heat stays entirely within the system.

Example 2.2 Relating ∆H and ∆U The internal energy change when 1.0 mol CaCO 3 in the form of calcite converts to aragonite is kJ. Calculate the difference between the enthalpy change and the change in internal energy when the pressure is 1.0 bar given that the densities of the solids are 2.71 g cm −3 and 2.93 g cm −3, respectively. aragonite calcite

Example 2.2 Relating ∆H and ∆U only 0.1 per cent of the value of ∆U. We see that it is usually justifiable to ignore the difference between the enthalpy and internal energy of condensed phases, except at very high pressures, when pV is no longer negligible.

Self Test 2.2 Calculate the difference between ∆H and ∆U when 1.0 mol Sn(s, grey) of density 5.75 g cm −3 changes to Sn(s, white) of density 7.31 g cm −3 at 10.0 bar. At 298 K, ∆H = +2.1 kJ.

∆n g is the change in the amount of gas molecules in the reaction. Measurement of enthalpy change  H and  U for gas involved process

Ill ustration 2.4 The relation between ∆H and ∆U for gas-phase reactions 1.In the reaction 2 H 2 (g) + O 2 (g) → 2 H 2 O(l), 3 mol of gas-phase molecules is replaced by 2 mol of liquid-phase molecules, so ∆n g = −3 mol. Therefore, at 298 K, when RT = 2.5 kJ mol −1, the enthalpy and internal energy changes taking place in the system are related by Note that the difference is expressed in kilojoules, not joules as in Example 2.2. The enthalpy change is smaller (in this case, less negative) than the change in internal energy because, although heat escapes from the system when the reaction occurs, the system contracts when the liquid is formed, so energy is restored to it from the surroundings.