HEP Tel Aviv University Lumical R&D progress report Ronen Ingbir ECFA - Durham2004 Lumical - A Future Linear Collider detector.

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

TAU Update MPI Munich meeting 17/10/2006 Luminosity Detector R&D Tel Aviv University Halina Abramowicz, Ronen Ingbir, Sergey Kananov, Aharon Levy, Iftach.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Angular resolution of LAT Agnieszka Kowal University of Science and Technology, Cracow TESLA Workshop on Forward Calorimetry Cracow, 10 October 2003.
P hysics background for luminosity calorimeter at ILC I. Božović-Jelisavčić 1, V. Borka 1, W. Lohmann 2, H. Nowak 2 1 INN VINČA, Belgrade 2 DESY, Hamburg.
L. Suszycki, Tel Aviv, Sept, 2005 LumiCal background studies Contents: Guinea Pig results Vermasseren results Remarks on energy reconstruction Conclusions.
Experimental Aspects of Precision Luminosity Measurement contributions from Forward Calorimetry Collaboration L.Suszycki AGH University of Science and.
ILC-Oriented R&D I: Electromagnetic Radiation Damage Studies BeamCal instrument expected to receive up to 100 Mrad per year of electromagnetically-induced.
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Effect of the Shape of the Beampipe on the Luminosity Measurement September 2008 Iftach Sadeh Tel Aviv University DESY.
Angular resolution study of isolated gamma with GLD detector simulation 2007/Feb/ ACFA ILC Workshop M1 ICEPP, Tokyo Hitoshi HANO collaborated with Acfa-Sim-J.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Krakow2006.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Precise Measurements of SM Higgs at the ILC Simulation and Analysis V.Saveliev, Obninsk State University, Russia /DESY, Hamburg ECFA Study Workshop, Valencia.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Krakow Feb.06 Institute of Physics, Prague Petr Mikes / Lukas Masek.
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Simulation of physics background for luminosity calorimeter M.Pandurović I. Božović-Jelisavčić “Vinča“ Institute of Nuclear Sciences, Belgrade, SCG.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Ivan Smiljanić Vinča Institute of Nuclear Sciences, Belgrade, Serbia Energy resolution and scale requirements for luminosity measurement.
July 2006ALCWS Vancouver Very Forward Instrumentation of the Linear Collider Detector On behalf of the Wolfgang Lohmann, DESY.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Electron Detection in the SiD BeamCal Jack Gill, Gleb Oleinik, Uriel Nauenberg, University of Colorado ALCPG Meeting ‘09 2 October 2009.
Optimization of the Design of the Forward Calorimeters ECFA LC Workshop Montpellier, 15 November 2003 *FC Collaboration: Colorado, Cracow, DESY(Zeuthen),
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
A Clustering Algorithm for LumiCal Halina Abramowicz, Ronen Ingbir, Sergey Kananov, Aharon Levy, Iftach Sadeh Tel Aviv University DESY Collaboration High.
A Luminosity Detector for the Future Linear Collider Ronen Ingbir Prague Workshop HEP Tel Aviv University.
Silicon sensors for LumiCal Two possible options Wojciech Wierba Institute of Nuclear Physics PAN Cracow.
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
Pad design present understanding Tel Aviv University HEP Experimental Group Ronen Ingbir Collaboration High precision design Tel-Aviv Sep.05 1.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
BESIII EMC Simulation & Reconstruction He Miao
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Lumical R&D progress report Ronen Ingbir.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
Systematic limitations to luminosity determination in the LumiCal acceptance from beam-beam effects C. Rimbault, LAL Orsay LCWS06, Bangalore, 9-13 March.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Tungsten-Silicon Luminosity Detector with Flat Geometry Ronen Ingbir Tel Aviv University High Energy Physics Experimental Group.
Test Beam Results on the ATLAS Electromagnetic Calorimeters Lucia Di Ciaccio – LAPP Annecy (on behalf of the ATLAS LAr Group) OUTLINE Description of the.
Correction methods for counting losses induced by the beam-beam effects in luminosity measurement at ILC Ivan Smiljanić, Strahinja Lukić, Ivanka Božović.
Régis Lefèvre (LPC Clermont-Ferrand - France)ATLAS Physics Workshop - Lund - September 2001 In situ jet energy calibration General considerations The different.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
FCAL Workshop Munich -17 October 2006FCAL Workshop Munchen -17 October 2006 Four-fermion processes as a background in the luminosity calorimeter M.Pandurović.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
Study of the Differential Luminosity Spectrum Measurement using Bhabha Events in 350GeV WANG Sicheng 王 思丞 Supervisor: André Sailer.
1 Angular resolution study of isolated gamma with GLD detector simulation 2007/Feb/5 ACFA ILC Workshop M1 ICEPP, Tokyo Hitoshi HANO On behalf of the Acfa-Sim-J.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
LumiCal High density compact calorimeter at the ILC Wojciech Wierba Institute of Nuclear Physics PAS Cracow, Poland.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Luminosity and Beamtuning Calorimeters in the very Forward Region
FCAL R&D towards a prototype of very compact calorimeter
Luminosity Measurement using BHABHA events
The very forward region Tel-Aviv meeting summary
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Calorimeters of the Very Forward Region
LAT performance studies
Presentation transcript:

HEP Tel Aviv University Lumical R&D progress report Ronen Ingbir ECFA - Durham2004 Lumical - A Future Linear Collider detector

ΔE~0.31√E RL Cracow Strip design Lumical - A Future Linear Collider detector

Pad design 0.34 cm Tungsten 0.31 cm Silicon Cell Size 1.3cm*2cm> 1.3cm*6cm< ~1 Radiation length ~1 Radius Moliere HEP Tel Aviv University 15 cylinders * 24 sectors * 30 rings = cells R L 8 cm 28 cm 6.10 m Lumical - A Future Linear Collider detector

HEP Tel Aviv University Reconstruction Algorithm Events Num. We explored two reconstruction algorithms: The log. weight fun. was designed to reduce steps in a granulated detector : 1. Selection of significant cells. 2. Log. smoothing. Log. weight. E weight. Lumical - A Future Linear Collider detector

HEP Tel Aviv University Logarithmic Constant Constant value After selecting: We explored a more systematic approach. The first step is finding the best constant to use under two criteria: 1. Best resolution. 2. Minimum bias. 400 GeV Lumical - A Future Linear Collider detector

HEP Tel Aviv University Energy dependent constant The goal is to find a global weight function. Is the the log. weight constant really a constant ? Constant value Lumical - A Future Linear Collider detector

HEP Tel Aviv University Shower reconstruction Num. of Cells Num. of Sectors Num. of Cylinders Energy portion (%) En>90% What happens when we select the best log. weight constant ? Shower size Log. Weight selection Most of the information is in the selected cells. Lumical - A Future Linear Collider detector

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Magnetic field

HEP Tel Aviv University Background studies BHWIDE + CIRCE Lumical - A Future Linear Collider detector

HEP Tel Aviv University 33 mrad Geometric acceptance Energy Resolution Out In Eout-Ein Eout+Ein P= 3 cylinders 2 cylinders 1 cylinders Lumical - A Future Linear Collider detector

HEP Tel Aviv University Left-Right balance R L Simulation distribution Distribution after acceptance and energy balance event selection Right side detector signal Left side detector signal Right signal - Left signal Lumical - A Future Linear Collider detector

HEP Tel Aviv University Energy resolution Ntuple No cuts With cuts Pure electrons 31 % 29%29% Bhabha 42 % 24 % Bhabha + Beamstrahlung 45 % 24 % Bhabha + Beamstrahlung + Beam spread (0.05%) 46 % 25 % Bhabha + Beamstrahlung + Beam spread (0.5%) 49 % 29 % Lumical - A Future Linear Collider detector

HEP Tel Aviv University Angular resolution Lumical - A Future Linear Collider detector

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector ‘Pure’ electrons simulation Bhabha+Beam+BS(5e-4) Bias study Future linear collider precision goal:

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Real life algorithm Working with both sides of the detector and looking at the difference between the reconstructed properties: (In real life we don’t have generated properties)

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 0.34 cm Tungsten 0.31 cm Silicon 0.55 cm Tungsten 0.1 cm Silicon Dense design

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 30 radiation length detector 47 radiation length detector Z (cm) Detector Signal 0.8cm 1.1cm Moliere radius & Radiation length

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Energy Resolution Events New geometric acceptance

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Optimization

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Margins in between cells Energy resolutionPolar resolution

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Our basic detector is designed with 30 rings * 24 sectors * 15 cylinders = 10,800 channels Do we use these channels in the most effective way ? Maximum peak shower design 30 rings 15 cylinders 20 cylinders 10 cylinders 24 sectors * 15 rings * (10 cylinders + 20 cylinders) = 10,800 channels 4 rings15 rings11 rings 10 cylinders

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Maximum peak shower design Basic Design Angular resolution improvement without changing the number of channels Other properties remain the same Constant value Polar reconstruction 0.11e-3 rad 0.13e-3 rad

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector ‘Real physics’ MC + digitization + elec. noise + New max peak design + Margins Final optimization Pure electron MC Detector properties Events selection ‘Real physics’ MC Bhabha + Beamstrahlung + Beamspread R&D status & future steps High statistics MC for required precision

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector THE END