1 NONLINEAR INTERFEROMETER FOR SHAPING THE SPECTRUM OF BRIGHT SQUEEZED VACUUM Maria Chekhova Max-Planck Institute for the Science of Light, Erlangen, Germany.

Slides:



Advertisements
Similar presentations
Quantum optical effects with pulsed lasers
Advertisements

Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information.
Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
Two-Photon Fields: Coherence, Interference and Entanglement Anand Kumar Jha Indian Institute of Technology, Kanpur QIPA 2103, HRI, Allahabad.
ICSO High Accuracy Laser Telemetry for Kilometric Distance Measurement in Space C.COURDE, H. PHUNG Duy, M. LINTZ, A. BRILLET ARTEMIS, Observatoire.
Experimental work on entangled photon holes T.B. Pittman, S.M. Hendrickson, J. Liang, and J.D. Franson UMBC ICSSUR Olomouc, June 2009.
Correlated imaging, quantum and classical aspects INFM, Università dell’Insubria, Como, Italy Quantum Optics II Cozumel, Mexico, December Theory:
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
S. Varma, Y.-H. Chen, and H. M. Milchberg Institute for Research in Electronics and Applied Physics Dept. of Electrical and Computer Engineering Dept.
Entanglement and Bell’s Inequalities
TeraHertz Kerr effect in GaP crystal
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
TWO-PHOTON ABSORPTION IN SEMICONDUCTORS Fabien BOITIER, Antoine GODARD, Emmanuel ROSENCHER Claude FABRE ONERA Palaiseau Laboratoire Kastler Brossel Paris.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Quantum Entanglement and Bell’s Inequalities Kristin M. Beck and Jacob E. Mainzer Demonstrating quantum entanglement of photons via the violation of Bell’s.
Single photon sources. Attenuated laser = Coherent state Laser Attenuator Approximate single photon source Mean number of photon per pulse.
Analysis of quantum entanglement of spontaneous single photons
1 A Remote Bell-State-Analyzer a.k.a. Robert´s Diploma–Project.
Fiber-Optic Communications James N. Downing. Chapter 2 Principles of Optics.
Shashi Prabhakar, S. Gangi Reddy, A. Aadhi, Ashok Kumar, Chithrabhanu P., G. K. Samanta and R. P. Singh Physical Research Laboratory, Ahmedabad
Interference Diffraction and Lasers
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
1/9/2007Bilkent University, Physics Department1 Supercontinuum Light Generation in Nano- and Micro-Structured Fibers Mustafa Yorulmaz Bilkent University.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
Discussion of measurement methods for femtosecond and attosecond pulses.
ISTITUTO NAZIONALE DI RICERCA METROLOGICA 1 M. Genovese Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, Torino, Italy PDC.
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University.
QUANTUM TELEPORTATION
1 Characterizing Photonic Spatial States Sebastião Pádua Physics Department - Federal University of Minas Gerais – Belo Horizonte - Brazil Paraty 2009,
Pure-state, single-photon wave-packet generation by parametric down conversion in a distributed microcavity M. G. Raymer, Jaewoo Noh* Oregon Center for.
Max-Born-Institut M.Boyle, A.Thoß, N.Zhavaronkov, G.Korn Max Born Institute; Max-Born-Str. 2A, Berlin, Germany T.Oksenhendler, D. Kaplan Fastlite,
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
Femto-second Measurements of Semiconductor Laser Diodes David Baxter
Yaakov Shaked, Roey Pomeranz and Avi Pe’er Department of Physics and BINA Center for Nano-technology, Bar-Ilan University, Ramat-Gan 52900, Israel
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Characterisation of non-classical light sources for quantum information technologies Wojciech Wasilewski Michał Karpiński Piotr Wasylczyk Czesław Radzewicz.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Under the Influence of Spectral Entanglement: Polarization-Entanglement Swapping and Fusion Gates Travis Humble * and Warren Grice, Oak Ridge National.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Picosecond Pulse-Pumped Efficient Optical Parametric Amplifier for Non-Chirped Femtosecond Pulses Hua Yang Notes: 1.Simulations performed with 10 fs and.
Multimode quantum optics Nicolas Treps Claude Fabre Gaëlle Keller Vincent Delaubert Benoît Chalopin Giuseppe Patera Virginia d’Auria Jean-François Morizur.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Attosecond Optical Science V R. The key idea; F=ma Classically an atom’s own electron, driven by a strong electric field can interact with its parent.
Optical and Quantum Communications Group June 9, 2005 Three Themes for Theory Research: Gaussian States, Coherent Laser Radars, and Multi-Photon Detectors.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Multi-photon Absorption Rates for N00N States William Plick, Christoph F. Wildfeuer, Jonathan P. Dowling: Hearne Institute for Theoretical Physics, LSU.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Spontaneous Parametric Down Conversion and The Biphoton
Taylor’s experiment (1909) slit needle diffraction pattern f(y) film Proceedings of the Cambridge philosophical society (1909)
ENTANGLED BRIGHT SQUEEZED VACUUM
Four wave mixing in submicron waveguides
Spontaneous Parametric Down Conversion
Nergis Mavalvala Aspen January 2005
Announcements Homework for tomorrow… Ch. 22, Probs. 30, 32, & 49
Wavelength tunability in whispering gallery mode resonators
Superfluorescence in an Ultracold Thermal Vapor
Principle of Mode Locking
Wave nature of light and optical instruments
Quantum Information with Continuous Variables
Advanced Optical Sensing
High energy 6.2 fs pulses Shambhu Ghimire, Bing Shan, and Zenghu Chang
Presentation transcript:

1 NONLINEAR INTERFEROMETER FOR SHAPING THE SPECTRUM OF BRIGHT SQUEEZED VACUUM Maria Chekhova Max-Planck Institute for the Science of Light, Erlangen, Germany M.V.Lomonosov Moscow State University Max-Planck Institute for the Science of Light Quantum Radiation group

2 OUTLINE 1. Bright squeezed vacuum 2. Nonlinear SU(1,1) interferometer 3. Bright squeezed vacuum in a nonlinear interferometer: - tailoring the angular spectrum; - OAM modes; - tailoring the frequency spectrum. 4. Conclusions

3 OUTLINE 1. Bright squeezed vacuum 2. Nonlinear SU(1,1) interferometer 3. Bright squeezed vacuum in a nonlinear interferometer: - tailoring the angular spectrum; - OAM modes; - tailoring the frequency spectrum. 4. Conclusions

4 BRIGHT SQUEEZED VACUUM Strong pump Quadrature squeezed BSV q p q p Twin-beam BSV Superbunching (good for multiphoton effects) Easily

5 PHOTON-NUMBER ENTANGLEMENT OF BSV S B A I.N. Agafonov, M.V. Chekhova, and G.Leuchs, PRA 82, (2010). n n M.V. Chekhova, G.Leuchs, and M. Zukowski, Optics Communications 337, 27 (2015). Weak photon-number entanglement Low-gain PDC (SPDC) High-gain PDC High degree of photon-number entanglement

6 POLARIZATION ENTANGLEMENT OF BSV S QWP PBS B A m m n n T.Sh. Iskhakov, I.N. Agafonov, M.V. Chekhova, and G.Leuchs, PRL 109, (2012).

7 BELL INEQUALITY FOR BSV S PBS B A m n K. Rosolek, M. Stobinska, M. Wiesniak, M. Zukowski, PRL 114, (2015) Photon numbers n,m as local hidden variables violated by quantum mechanics but loss-sensitive

8 OUTLINE 1. Bright squeezed vacuum 2. Nonlinear SU(1,1) interferometer 3. Bright squeezed vacuum in a nonlinear interferometer: - tailoring the angular spectrum; - OAM modes; - tailoring the frequency spectrum. 4. Conclusions

9 NONLINEAR INTERFEROMETER Nonlinear source 1 Nonlinear source 2 pump Nonlinear Mach-Zehnder interferometer Linear Mach-Zehnder interferometer

10 SU(1,1) INTERFEROMETER B. Yurke, S.L. McCall, and J.R. Klauder, PRA 33, 4033 (1986) Nonlinear source 1 Nonlinear source 2 pump idler signal Parametric down-conversion or four-wave mixing

11 SU(2) AND SU(1,1) INTERFEROMETERS B. Yurke, S.L. McCall, and J.R. Klauder, PRA 33, 4033 (1986) SU(2) interferometerSU(1,1) interferometer ‘beamsplitter’ ‘Bogolyubov’

12 OUTLINE 1. Bright squeezed vacuum 2. Nonlinear SU(1,1) interferometer 3. Bright squeezed vacuum in a nonlinear interferometer: - tailoring the angular spectrum; - OAM modes; - tailoring the frequency spectrum. 4. Conclusions

13 ANGULAR SPECTRUM At large L, a single mode can be obtained. Two crystals far apart: only a narrow angular spectrum is amplified in the second crystal A traveling-wave high-gain optical parametric amplifier: broad spectrum, multimode BSV pump PDC Higher-order modes diffract faster, hence only lowest-order modes survive.

14 SHAPING THE ANGULAR SPECTRUM A. Perez, T.Sh. Iskhakov, S. Lemieux, P. Sharapova, O.V. Tikhonova, M.V. Chekhova and G. Leuchs, Optics Letters 39, 2403 (2014). Frequency filtering (monochro- mator): 1.25 frequency modes. Angular structure: 1.1 angular modes 355nm, 0.2mJ, 1kHz Because for a single mode g (2) =2, measurement of g (2) for the whole beam provides the number of modes: CCD

15 Collinear emission suppressed  (rad)  (rad) MODES WITH ORBITAL ANGULAR MOMENTUM

16 MODES WITH ORBITAL ANGULAR MOMENTUM Modes with optical angular momentum l=-2,-1,1,2 Collinear emission suppressed l=-1 l=0 l=1

17 ANALOGY BETWEEN SPACE AND TIME Spatial case: the angular width Temporal case: ??? By analogy, T.Sh. Iskhakov, S. Lemieux, A.M. Perez, R.W. Boyd, G. Leuchs, and M.V. Chekhova, arXiv: (2015). A.M. Perez, T.Sh. Iskhakov, P.R. Sharapova, S. Lemieux, O.V. Tikhonova, M.V. Chekhova, and G. Leuchs, OL 39, 2403 (2014).

18 SHAPING THE FREQUENCY SPECTRUM OF PDC crystal1 crystal2 Dispersive material BSV pump mode0 mode20 Frequency spectrum from a single crystal: broad, multimode  Higher-order modes spread more in time and do not overlap with the pump pulse in the second crystal t

19 NONLINEAR INTERFEROMETER 3 mm BBO type I Delay line Telescope (1mm) Measurement of frequency and spatial spectra 400 nm, 0.85 ps, 5 kHz 0.05 mJ Interference (3 mm BK7) LP filter Various glasses (BK7, SF6, SF57, …)

20 SPECTRUM NARROWING 2x0.3 cm of BK7 Interference structure 60 nm

21 SPECTRUM NARROWING 2x18 cm of SF6 2 effects: -Phase drift (~20 s); -Intensity fluctuations (~ps) After averaging over intensity fluctuations, envelope width 3.2 nm 3.2 nm

22 SPECTRUM NARROWING 2x18 cm of SF6

23 SPECTRUM NARROWING 5.7 ps pulses, 355 nm pumping 0.85 ps pulses, 400 nm pumping

24 SPECTRUM NARROWING

25 OUTLINE 1. Bright squeezed vacuum 2. Nonlinear SU(1,1) interferometer 3. Bright squeezed vacuum in a nonlinear interferometer: - tailoring the angular spectrum; - OAM modes; - tailoring the frequency spectrum. 4. Conclusions

QUANTUM RADIATION GROUP Mathieu Manceau Angela Perez Timur Iskhakov, Olga Tikhonova, Robert Fickler, Robert Boyd, Gerd Leuchs Samuel Lemieux Polina Sharapova Lina Beltran

27 CONCLUSIONS Bright squeezed vacuum manifests macroscopic entanglement, up to the violation of Bell’s inequalities. By generating it in a nonlinear interferometer, one can - tailor its angular spectrum (up to obtaining single-mode radiation); - tailor its frequency spectrum (up to obtaining single-mode radiation); - obtain it in OAM modes THANK YOU FOR YOUR ATTENTION!

28 SIMPLIFIED MODEL T.Sh. Iskhakov, S. Lemieux, A.M. Perez, R.W. Boyd, G. Leuchs, and M.V. Chekhova, arXiv: (2015). Modes of the first crystal get differently spread due to GVD and are differently amplified in the second one Mode 50 Mode 10 Mode 0 10 cm SF6 60 cm SF6