Measurements of  1 /  and  2 /  Masashi Hazumi (KEK) July 31, 2006 XXXIII International Conference on High Energy Physics (ICHEP’06) Many thanks to.

Slides:



Advertisements
Similar presentations
Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
Advertisements

Measurements of the angle  : ,  (BaBar & Belle results) Georges Vasseur WIN`05, Delphi June 8, 2005.
Measurements of the angles of the Unitarity Triangle at B A B AR Measurements of the angles of the Unitarity Triangle at B A B AR PHENO06 Madison,15-18.
May , 2002 FPCP02, Philadelphia, U.S.A. Masashi Hazumi (KEK) sin2  1 atBelle sin2  1 at Belle Status of KEKB and Belle sin2  1 Winter ’02 Update.
Measurements of sin2  from B-Factories Masahiro Morii Harvard University The BABAR Collaboration BEACH 2002, Vancouver, June 25-29, 2002.
6/2/2015Attila Mihalyi - Wisconsin1 Recent results on the CKM angle  from BaBar DAFNE 2004, Frascati, Italy Attila Mihalyi University of Wisconsin-Madison.
EPS, July  Dalitz plot of D 0   -  +  0 (EPS-208)  Kinematic distributions in  c   e + (EPS-138)  Decay rate of B 0  K * (892) +  -
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
CPV measurements with Belle/KEKB Stephen L. Olsen Univ. of Hawai’i Feb 17, 2003 LCPAC meeting at KEK.
16 May 2002Paul Dauncey - BaBar1 Measurements of CP asymmetries and branching fractions in B 0   +  ,  K +  ,  K + K  Paul Dauncey Imperial College,
.. Gabriella Sciolla Massachusetts Institute of Technology On behalf of the BaBar Collaboration APS/DPF Meeting Philadelphia, April 5 - 8, 2003 Cracking.
Measurements of Radiative Penguin B Decays at BaBar Jeffrey Berryhill University of California, Santa Barbara For the BaBar Collaboration 32 nd International.
Baryonic decays of B mesons. H.Kichimi, June28-July3, Baryonic decays of B mesons H. Kichimi Representing the Belle collaboration BEACH June28-July3,
Measurements of  and future projections Fabrizio Bianchi University of Torino and INFN-Torino Beauty 2006 The XI International Conference on B-Physics.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)
B Decays to Open Charm (an experimental overview) Yury Kolomensky LBNL/UC Berkeley Flavor Physics and CP Violation Philadelphia, May 18, 2002.
CP Asymmetry in B 0 ->π + π – at Belle Kay Kinoshita University of Cincinnati Belle Collaboration B 0 ->π + π – and CP asymmetry in CKMB 0 ->π + π – and.
Preliminary Measurement of the BF(   → K -  0  ) using the B A B AR Detector Fabrizio Salvatore Royal Holloway University of London for the B A B AR.
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
Moriond EW, 3 Mar 2008Tagir Aushev (EPFL, ITEP)1  B → K S  0  0  B → K S K S  B → K S  0  B → D *+ D *-  B → a 1 , a 1 K, b 1 , b 1 K...  
Belle results relevant to LHC Pheno-07 May 8, 2007 Madison Wisc. S.L. Olsen U of Hawai’i.
1 Disclaimer This talk is not for B physics experts. Taipei101 If you did it, you may check s during my talk. B0B0 B0B0.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
CP violation at Belle Kenkichi Miyabayashi for Belle collaboration (Nara Women’s University) 2003/Oct./14th BEAUTY2003.
Page 1 B 0   Ks + quasi 2 body modes Koji Hara (Nagoya University) CKM2006 WG4    from charmless B decays.
Takeo Higuchi Institute of Particle and Nuclear Studies, KEK for the Belle collaboration Oct 14, 2003; Pittsburgh, PA Takeo Higuchi, KEK BEAUTY2003 Hot.
DPF 2009 Richard Kass 1 Search for b → u transitions in the decays B → D (*) K - using the ADS method at BaBar Outline of Talk *Introduction/ADS method.
Wolfgang Menges, Queen Mary Measuring |V ub | from Semileptonic B Decays Wolfgang Menges Queen Mary, University of London, UK Institute of Physics: Particle.
CP Violation and CKM Angles Status and Prospects Klaus Honscheid Ohio State University C2CR 2007.
1 CP violation in B → ,  Hiro Sagawa (KEK) FLAVOR PHYSICS & CP VIOLATION, Ecole Polytechnique, Paris, France on June 3-6, 2003.
Time-dependent CP Violation (tCPV) at Belle -- New results at ICHEP Masashi Hazumi (KEK) October. 10, 2006.
Rare B Decays at Belle Hsuan-Cheng Huang ( 黃宣誠 ) National Taiwan University 2 nd BCP NTU, Taipei June 7 - 9, 2002.
M. Adinolfi - University of Bristol1/19 Valencia, 15 December 2008 High precision probes for new physics through CP-violating measurements at LHCb M. Adinolfi.
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Search for CP Violation in B 0  h decays and B 0  h decays with B A B AR International Europhysics Conference on High Energy Physics, July 17 th -23.
1 ICHEP’04, Beijing, Aug 16-22, 2004 A. Höcker – sin2  in Loop-Dominated Decays with B A B AR The Measurement of sin2β (eff) in Loop-Dominated B Decays.
CP VIOLATION at B-factories A.Bondar (Budker INP,Novosibirsk) Measurements of large CPV in b  c c s modes Search for New Physics: CPV in b  s penguin.
 3 measurements by Belle Pavel Krokovny KEK Introduction Introduction Apparatus Apparatus Method Method Results Results Summary Summary.
CP violation at B-factoris Introduction  1 /   2 /   3 /  Vub, D mixing, Bs Conclusion Pavel Krokovny KEK, Tsukuba, Japan KEK.
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
Andrzej Bożek nz11Highlights of the Belle Experiment SAB Review Selection of the most important Belle results since last SAB review (2005):  B 0.
Summary of  2 measurements at Super KEKB Hirokazu Ishino Tokyo Institute of Technology 19 Dec., 2006.
1 BaBar & Belle: Results and Prospects Claudio Campagnari University of California Santa Barbara.
Measurement of sin2  at B A B AR Douglas Wright Lawrence Livermore National Laboratory B A B AR For the B A B AR Collaboration 31st International Conference.
CP Violation Studies in B 0  D (*)  in B A B A R and BELLE Dominique Boutigny LAPP-CNRS/IN2P3 HEP2003 Europhysics Conference in Aachen, Germany July.
1 EPS03, July 17-23, 2003Lorenzo Vitale Time dependent CP violation studies in D(*)D(*) and J/ψ K* Lorenzo Vitale INFN Trieste On behalf of BaBar and Belle.
Maria Różańska, INP Kraków HEP2003 Europhysics Conference –Aachen, July 18th 1 CPV in B → D (*) K (*) (and B → D K  ) in BaBar and Belle Outline: CPV.
1 Koji Hara (KEK) For the Belle Collaboration Time Dependent CP Violation in B 0 →  +  - Decays [hep-ex/ ]
Measurements of sin2  1 in processes at Belle CKM workshop at Nagoya 2006/12/13 Yu Nakahama (University of Tokyo) for the Belle Collaboration Analysis.
CP Violation in B decays 1 Y.Sakai KEK Jan. 9, 2005  experimental review  KEKB/BellePEP-II/BaBar.
Measurement of  2 /  using B   Decays at Belle and BaBar Alexander Somov CKM 06, Nagoya 2006 Introduction (CP violation in B 0   +   decays) Measurements.
 1 measurements with tree-level processes at Belle O. Tajima (KEK) Belle collaboration ICHEP06 July 28, 2006.
Andrzej Bożek for Belle Coll. I NSTITUTE OF N UCLEAR P HYSICS, K RAKOW ICHEP Beijing 2004  3 and sin(2  1 +  3 ) at Belle  3 and sin(2  1 +  3 )
Update on Measurement of the angles and sides of the Unitarity Triangle at BaBar Martin Simard Université de Montréal For the B A B AR Collaboration 12/20/2008.
A High Statistics Study of the Decay M. Fujikawa for the Belle Collaboration Outline 1.Introduction 2.Experiment Belle detector 3.Analysis Event selection.
Chunhui Chen, University of Maryland PASCOS CP Violation in B Physics Chunhui Chen University of Maryland The 12 th International Symposium on Particles,
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
Charm Mixing and D Dalitz analysis at BESIII SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration) 37 th International Conference.
Search for New Physics Phases in b  s Penguins Time-dependent CP Violation (TCPV) Measurements at B A B AR and Belle M. Hazumi (KEK) FPCP2004, Oct. 4-9,
ICHEP 2004, Beijing 1 Recent Results on B decays Y.Sakai (Belle/KEK) - Rare B Decay Highlights + Belle b  sqq Time-dependent CPV - -
BNM Summary of Present Experimental Results 13-Sep-2006, Y.Sakai (KEK) Based on ICHEP06 results (highlights) CKM:  1 ( & b  s),  2,  3,... Decays.
Measurements of  1 /  Flavor Physics and CP Violation 2010, May 25, 2010, Torino, Italy, K. Sumisawa (KEK)
D0 mixing and charm CP violation
Tagir Aushev For the Belle Collaboration (EPFL, Lausanne ITEP, Moscow)
Measurements of a and future projections
Radiative and electroweak penguin processes in exclusive B decays
CKM Status In this lecture, we study the results summarized in this plot. November 17, 2018 Sridhara Dasu, CKM Status.
new measurements of sin(2β) & cos(2β) at BaBar
Presentation transcript:

Measurements of  1 /  and  2 /  Masashi Hazumi (KEK) July 31, 2006 XXXIII International Conference on High Energy Physics (ICHEP’06) Many thanks to many people, in particular to: T. Aushev, T. Browder, P. Chang, R. Faccini, K. George, T. Gershon, K. Hara, H. Ishino, A. Lazzaro, S. Olsen, Y. Sakai, O. Tajima and K. Trabelsi

2 New Results from BaBar and Belle for Stringent Tests of the Kobayashi-Maskawa Model of CP Violation

3 Main New Results Covered in This Talk (all results are preliminary)  1 with tree diagram (b  ccs)  1 with tree diagram (b  ccs) BaBar: sin2  in B 0  J/    (2S)K S,  c K S,  c1 K S, J/  BaBar: sin2  in B 0  J/    (2S)K S,  c K S,  c1 K S, J/   Belle: sin2  1 in B 0  J/  Belle: sin2  1 in B 0  J/    1 with penguin diagram (b  sqq)  1 with penguin diagram (b  sqq) BaBar: B 0  K + K  K 0,  ’K 0, K S K S K S,  K S,  K S,  0 K SBaBar: B 0  K + K  K 0,  ’K 0, K S K S K S,  K S,  K S,  0 K S Belle: B 0   ’K 0,  0 K SBelle: B 0   ’K 0,  0 K S Belle: B 0   K 0, K + K  K S, K S K S K S, f 0 K S,  K SBelle: B 0   K 0, K + K  K S, K S K S K S, f 0 K S,  K S  2  2 BaBar: , , BaBar: , ,  Belle: Belle:  Belle: Belle:  K.Hara K.George A. Lazzaro O. Tajima This talk H. Ishino S. Telnov

4 Some other new results and recently published results also mentioned but very briefly.  /  3 -related  R.Kowalewski (next speaker) My apologies if your favorites are not included Remarks

5 25 th Anniversary of Time-dependent CP Violation (tCPV)

6 Tony, are you nuts? Look at this. We need millions of B and use them to search for mixing and CP violation This took us six months! Tribute from S. Olsen 5 B mesons

7 PEP-II at SLAC KEKB at KEK Belle BaBar 9GeV (e  )  3.1GeV (e + ) peak luminosity: 1.12  cm  2 s  1 Two Asymmetric-energy B Factories 8GeV (e  )  3.5GeV (e + ) peak luminosity: 1.65  cm  2 s  1 world record 11 nations, 80 institutes, 623 persons 13 countries, 57 institutes, ~400 collaborators

8 Integrated Luminosity PEP-II for BaBar As of July 24, 2006 KEKB for Belle KEKB + PEP-II

9 Far beyond the design luminosities of both proposals Triumph in accelerator science reached on July 13, 2006 ~ 1 Billion BB pairs

10 Motivation Q. What is the main source of CP violation ? A. Kobayashi-Maskawa phase IS the dominant source ! Two promising approaches 1)Overconstrain the unitarity triangle: precise measurements of  and  needed 2) Compare sin2  in tree diagram and penguin diagram (e.g. b  s) sin2  history ( ) Q. Are there deviations from the CKM picture ? (e.g. new CP-violating phases) Paradigm shift !

11  1

12 Time-dependent CP violation (tCPV) “ double-slit experiment ” with particles and antiparticles b c d c s d J/  KSKS b d c KSKS b c s ddt t + Quantum interference between two diagrams tree diagram box diagram + tree diagram Vtd You need to “wait” (i.e.  t  0) to have the box diagram contribution.

13 tCPV in B 0 decays ( A =  C a la BaBar) Mixing-induced CPVDirect CPV e.g. for J/  Ks S =  CP sin2  1 = +sin2  1 A = 0 to a good approximation (  CP : CP eigenvalue) e.g. for J/  Ks S =  CP sin2  1 = +sin2  1 A = 0 to a good approximation (  CP : CP eigenvalue)

14 R : detector resolution w : wrong tag fraction (misidentification of flavor)  (1-2w) quality of flavor tagging They are well determined by using control sample D * l  D (*)  etc… S = 0.65 A = 0.00 B 0 tag _ _ -  CP sin2  1 Mixing of D * l Good tag region (OF-SF)/(OF+SF)  t| (ps)

15  1 with trees - Results -

16 B 0  J/  K 0 : 535 M BB pairs B 0  J/  K S B 0  J/  K L Nsig = 7482 Purity 97 % CP odd Nsig = 6512 Purity 59 % CP even p KL information is poor  lower purity Belle preliminary 00 _ BELLE-CONF-0647 O. Tajima

17 B 0  J/  K S B 0 tag _ 0 B 0  J/  K L B 0 tag _ 0 Asym. = -  CP sin2  1 sin  m  t sin2  1 = ±0.038 A = ±0.028 sin2  1 = ±0.057 A = ±0.033 stat error BELLE-CONF-0647 O. Tajima background subtracted

18 B 0  J/  K S B 0 tag _ 0 B 0  J/  K L B 0 tag _ 0 _ B 0  J/  K 0 : combined result Asym. = -  CP sin2  1 sin  m  t sin2  1 = ±0.038 A = ±0.028 sin2  1 = ±0.057 A = ±0.033 stat error BELLE-CONF-0647 O. Tajima

19 B 0  J/  K 0 : combined result sin2  1 = ±0.031 (stat) ±0.017 (syst) A = ±0.021 (stat) ±0.014 (syst) previous measurement sin2   =  (388 M BB pairs) B 0 tag _ 535 M BB pairs _ _ Belle preliminary BELLE-CONF-0647 O. Tajima

20 K.George A =  0.07   BaBar2006: sin2  in b  ccs B 0  J/     (2S)K S,  c K S,  c1 K S,  J/  

: BaBar + Belle Consistency with V ub,  3 /   R. Kowalewski (next speaker)

22  (not sin2  ) measurements B 0  D* + D*  Ks Time-dependent Dalitz analysis (T.Browder, A. Datta et al. 2000)  cos2  > 0 (94%CL, model-dependent) B 0  Dh 0 (h 0 =  0 etc.) Time-dependent Dalitz analysis  cos2  > 0 Belle: 98.3%CL (hep-ex/ , accepted by PRL) BaBar 87% CL (BABAR-CONF06/017) K.George

23  1 with penguins

24 3 theoretically-clean modes  Ks,  ’Ks, 3Ks

25 Results for 3 theoretically-clean modes  K 0,  'K 0, KsKsKs

26 Belle 2006: B 0   K 0 signal B 0 mass B 0 momentum _ 535M BB (bkg subtracted)   K  K , K S        K  K , K S        K S K L, K S      114  17  K L signal 114  17  K L signal 307  21  K S signal 307  21  K S signal Three modes New ! BELLE-CONF-0647

27 Belle 2006: tCPV in B 0   K 0 “sin2  1 ” =  0.50  0.21(stat)  0.06(syst) A =  0.07  0.15(stat)  0.05(syst) “sin2  1 ” =  0.50  0.21(stat)  0.06(syst) A =  0.07  0.15(stat)  0.05(syst)   K S and  K L combined  background subtracted  good tags   t  –  t for  K L  t distribution and asymmetry _ 535M BB Consistent with the SM (~1  lower) Consistent with Belle 2005 (Belle2005: “sin2  1 ” =  The most precise measurement now Consistent with the SM (~1  lower) Consistent with Belle 2005 (Belle2005: “sin2  1 ” =  The most precise measurement now unbinned fit SM BELLE-CONF-0647

28 BaBar 2006: tCPV in B 0      K 0 Obtain CP parameters for 2-body and 3-body modes simultaneously by time-dependent Dalitz fit _ 347M BB KKKSKKKSKKKLKKKSKKKSKKKL 1516  65 K  K  K 0  signal 1516  65 K  K  K 0  signal

29  K 0 : sin2  eff = ± 0.31(stat) ± 0.10 (syst) BaBar 2006: tCPV in B 0      K 0  measurement (not sin2  ) Rejected (within SM) 4.6 

30 Belle 2006: B 0   'K 0 signal 1421  46  'K S signal 1421  46  'K S signal 454  39  'K L signal 454  39  'K L signal _ 535M BB (bkg subtracted) B 0 mass B 0 momentum

31 Belle 2006: tCPV in B 0   'K 0 “sin2  1 ” =  0.64  0.10(stat)  0.04(syst) A =  0.01  0.07(stat)  0.05(syst) “sin2  1 ” =  0.64  0.10(stat)  0.04(syst) A =  0.01  0.07(stat)  0.05(syst) _ 535M BB First observation of tCPV (5.6  in a single b  s mode Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2  1 ” =  First observation of tCPV (5.6  in a single b  s mode Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2  1 ” =   t distribution and asymmetry ''   'K S and  'K L combined  background subtracted  good tags '   t  –  t for  'K L BELLE-CONF-0647

32 BaBar 2006: tCPV in B 0   'K 0 Cf. BaBar 2005: “sin2  ” =  0.13  0.03 “sin2  ” =  0.55  0.11(stat)  0.02(syst) A =  0.15  0.07(stat)  0.03(syst) “sin2  ” =  0.55  0.11(stat)  0.02(syst) A =  0.15  0.07(stat)  0.03(syst) “sin2  ” 4.9  from zero. _ 347M BB

33 Belle 2006: tCPV in B 0  K S K S K S “sin2  1 ” =  0.30  0.32(stat)  0.08(syst) A =  0.31  0.20(stat)  0.07(syst) “sin2  1 ” =  0.30  0.32(stat)  0.08(syst) A =  0.31  0.20(stat)  0.07(syst) 185  17 K S K S K S signal 185  17 K S K S K S signal B 0 mass _ 535M BB  t distribution and asymmetry  background subtracted  good tags BELLE-CONF-0647

34 “sin2  ” =  0.66  0.26(stat)  0.08(syst) A =  0.14  0.22(stat)  0.05(syst) “sin2  ” =  0.66  0.26(stat)  0.08(syst) A =  0.14  0.22(stat)  0.05(syst) BaBar 2006: tCPV in B 0  K S K S K S 176  17 K S K S K S signal 176  17 K S K S K S signal  t distribution and asymmetry _ 347M BB

35 Results for other b  s modes (~20sec/result)

36 Belle 2006: tCPV in B 0  f 0 K S “sin2  1 ” =   0.23(stat)  0.11(syst) A =   0.15(stat)  0.07(syst) “sin2  1 ” =   0.23(stat)  0.11(syst) A =   0.15(stat)  0.07(syst) _ 535M BB 377  25 f 0 K S signal Raw  symmetry B 0 mass good tags     mass BELLE-CONF-0648

37 BaBar 2006: tCPV in B 0    K S “sin2  ” =  0.33  0.26(stat)  0.04(syst) A =  0.20  0.16(stat)  0.03(syst) “sin2  ” =  0.33  0.26(stat)  0.04(syst) A =  0.20  0.16(stat)  0.03(syst) 425  28  0 K S signal 425  28  0 K S signal _ 347M BB

38 Belle 2006: tCPV in B 0    K S “sin2  1 ” =   0.35(stat)  0.08(syst) A =   0.14(stat)  0.05(syst) “sin2  1 ” =   0.35(stat)  0.08(syst) A =   0.14(stat)  0.05(syst) _ 535M BB 515  32  0 K S signal 515  32  0 K S signal Raw  symmetry B 0 mass good tags BELLE-CONF-0648

39 Belle 2006: tCPV in B 0  K  K  K S “sin2  1 ” =   0.15(stat)  0.03(syst) (CP-even) A =   0.10(stat)  0.05(syst) “sin2  1 ” =   0.15(stat)  0.03(syst) (CP-even) A =   0.10(stat)  0.05(syst) _ 535M BB 840  34     K S signal 840  34     K S signal Raw  symmetry B 0 mass good tags  0.13 BELLE-CONF-0648

40 Belle 2006: tCPV in B 0   K S “sin2  1 ” =   0.46(stat)  0.07(syst) A =   0.29(stat)  0.06(syst) “sin2  1 ” =   0.46(stat)  0.07(syst) A =   0.29(stat)  0.06(syst) _ 535M BB 118  18  K S signal 118  18  K S signal B 0 mass Raw  symmetry good tags BELLE-CONF-0648

41 BaBar 2006: tCPV in B 0   K S “sin2  ” =  0.62 (stat)  0.02(syst) A =  0.43 (stat)  0.03(syst) “sin2  ” =  0.62 (stat)  0.02(syst) A =  0.43 (stat)  0.03(syst)    17  0 K S signal _ 347M BB

42 BaBar 2006: tCPV in B 0    K S “sin2  ” =  0.17  0.52(stat)  0.26(syst) A =  0.64  0.41(stat)  0.25(syst) “sin2  ” =  0.17  0.52(stat)  0.26(syst) A =  0.64  0.41(stat)  0.25(syst) 111  19   K S signal 111  19   K S signal quasi 2-body approach (restricting to the region dominated by  0 ) _ 347M BB

:  1 with b  s Penguins Smaller than b  ccs in all of 9 modes Smaller than b  ccs in all of 9 modes Theory tends to predict positive shifts (originating from phase in Vts) Naïve average of all b  s modes sin2  eff = 0.52 ±  deviation between penguin and tree (b  s) (b  c) Naïve average of all b  s modes sin2  eff = 0.52 ±  deviation between penguin and tree (b  s) (b  c) More statistics crucial for mode-by-mode studies

44 Standard penguin (bird), or something else (rabbit may be) ? More statistics crucial for mode-by-mode studies

45 Other handles to search for new physics with penguin diagrams B 0  KsKs (b  d penguin): even higher statistics needed B   sum rule [Gronau, Rosner 2005] A( K 0  0 ) = A( K    ) + A( K 0  + ) – A( K +  0 ) B 0  Ks  0  (electromagnetic penguin) New physics may lead to right handed currents. This can be investigated using time-dependent CPV measurements of b  s  decays and will be discussed in Barlow's talk. S ~ 0 expected in SM  0.12  0.11  0.16  0.04

46  2  1 “beam”  2 “banana”

47 tCPV and  2 (  ) 11 33 22 V ud V * ub V td V * tb V cd V * cb B0B0 d b – d – bt – t B0B0 – V * tb V td V * tb V td Mixing diagramDecay diagram (tree) B0B0 b – d d u – d – u // // V ud V * ub With the tree diagram only S     = +sin2  2 A     = 0 S     = +sin2  2 A     = 0 3 possibilities: 

48 Belle 2006: B 0 →  +  − decay (CP asymmetry) first error: stat., second: syst. background subtracted  +  − yields  +  − asymmetry Large Direct CP violation (5.5  ) Large mixing-induced CP violation (5.6  ) confidence level contour H. Ishino BELLE-CONF-0649 _ 535M BB 1464±65 signal events

49 S. Telnov BaBar 2006: tCPV in B 0      confidence level contour Evidence for CP violation (3.6  ) Direct CP violation not yet observed

50 History of B 0 →  +  − decay 2.3  diff. btw. Belle and BaBar ( C =  A )

51 The results support the expectation from SU(3) symmetry that HFAG summer 2005 Interpretation: Direct CP violation+SU(3) N.G. Deshpande and X.-G. He, PRL 75, 1703 (1995) M. Gronau and J.L. Rosner, PLB 595, 339 (2004) ICHEP2006 World Average

52  :tough bananas A  world average  observation of large direct CPV Large penguin diagram (P) ~ Tree diagram (T) Large strong phase difference between P and T B 0d0d d b d u u W g ++ -- V td V * tb t d

53 Isospin analysis: flavor SU(2) symmetry Model-independent (symmetry-dependent) method SU(2) breaking effect well below present statistical errors “Penguin pollution” can be removed by isospin analysis [Gronau-London 1990]

54  2 constraints from B 0 →  +  − decay inputs B (  +  0 ) = (5.75  0.42) B (  +  - ) = (5.20  0.25)  B (  0  0 ) = (1.30  0.21) A (  0  0 ) =  0.33 S (  +  - ) =  0.59  0.09 A (  +  - ) =  0.07 inputs B (  +  0 ) = (5.75  0.42) B (  +  - ) = (5.20  0.25)  B (  0  0 ) = (1.30  0.21) A (  0  0 ) =  0.33 S (  +  - ) =  0.59  0.09 A (  +  - ) =  0.07 No stringent constraint obtained with  system alone  need  and 

55 tCPV with B 0       Even worse on first sight... –Dirty final state:              –Mixture of CP = +1 and  1: need to know each fraction (A + +A - )/√2 A || (A + -A - )/√2 A⊥A⊥ A0A0 + + A0A0 A+A+ A-A-     +1  1  1 CP vector

56 Isospin analysis with B   Branching fraction for B 0      is larger than     Branching fraction for B 0      is small (<1.1x10 -6 ) –small penguin pollution ~100% longitudinally polarized (~pure CP-even state) –no need for elaborate angular analysis No significant 3-body/4-body contamination Dirty final states including  0 –OK in the clean e + e  environment the best mode as of summer 2005 the best mode as of summer 2005

57 BaBar2006: tCPV in B  

58 BaBar2006: B   (cont.) B 0      branching fraction: indication at 3.0  B +      branching fraction

59  2 constraints from B 0 →  +  − decay New     branching fraction Isospin triangle now closed (new     )  constraint on  2 becomes less stringent.

60 BaBar2006: B   Dalitz analysis Preliminary result in 2004 (16 parameters ignoring     ) is superseded. Interference  info. on strong phase difference B0B0 B0B0  

61 ICHEP2006: BaBar(  /  /  ) + Belle(  /  )  Global Fit = [ 98 ] º  /  2 = [93 ]  +11  9 consistent with a global fit w/o  /  2

62  sets a “ window ” around 90   chooses the correct position inside the window: revival of  !  essential to suppress  2 ~ 0  or 180  Good agreement b/w the CKM fit (  determined by others) and the direct measurements Still a lot to do –solution around 0 or 180 , which requires |P/T|~1, can/should be much more suppressed e.g. Model-independent constraint using  K* (robust against SU(3) breaking) [Beneke-Gronau-Rohrer-Spranger 2006] –subtleties in statistical analyses with small statistics –uncertainty in background modeling, unknown phases etc.  /  2 : Discussions

63 Belle 2006:  2 from B   Dalitz analysis + isospin (pentagon) analysis 26(Dalitz) + 5(Br(     ), Br(     ), Br(     ), A (     ), and A (     ))  2 (degree) 1-CL Results             mass helicity  /  2 = [83 ]  +12  (1  ) (no constraint at 2  will be included in the world average BELLE-CONF-0650 _ 449M BB

64 Summary tCPV allows a direct access to fundamental EW parameters with small hadronic uncertainties in spite of large hadronic uncertainties in branching fractions !tCPV allows a direct access to fundamental EW parameters with small hadronic uncertainties in spite of large hadronic uncertainties in branching fractions ! sin2  1 now determined with 4% accuracysin2  1 now determined with 4% accuracy tCPV in b  s: interesting (and tantalizing) hint of deviation from SM expectations: only an order of magnitude more data will resolve the issuetCPV in b  s: interesting (and tantalizing) hint of deviation from SM expectations: only an order of magnitude more data will resolve the issue With improved statistics and sophisticated analyses, it has become clear that  2 is harder to determine than we thought at ICHEP2004; however, statistics are still the main obstacle.With improved statistics and sophisticated analyses, it has become clear that  2 is harder to determine than we thought at ICHEP2004; however, statistics are still the main obstacle. My talk is just a status report ! The best of two B factories is yet to come ! My talk is just a status report ! The best of two B factories is yet to come ! tCPVBeautyin

66 Both  1 /  and  2 /  Determined from Measurements of Time-dependent CP Asymmetries in the B Meson System

67 Belle 2006: Systematic errors of B 0  J/  K 0 Sin2  1 A Vertexing Flavor tagging  t Resolution Physics parameters Possible fit bias BG fractions (J/  K S ) BG fractions (J/  K L ) BG  t Tag-Side interference total

68 J/  K 0 J/  K S J/  K L q=+1 q=-1 SVD1 SVD2 ntrk tag >=6 ntrk tag =5 ntrk tag =4 ntrk tag =3 ntrk tag =2 ntrk tag =1 r

69 KEKB Integrated luminosity B 0  J/  K S 0 B 0  J/  K L 0

: World Average  0.026

: BaBar + Belle No direct CPV in the SM: will see with more data ~2  difference b/w BaBar and Belle

72 BaBar: statistical error: More precise measurements possible with more data ! More precise measurements possible with more data ! K.George

73 Belle 2006: B 0   K S helicity _ 532M BB Consistent with the model used in the analysis [P-wave (  ) + small non P-wave component obtained from Dalitz analysis] Consistent with the model used in the analysis [P-wave (  ) + small non P-wave component obtained from Dalitz analysis]

74 Belle 2006: tCPV in B 0   K 0 _ 532M BB KSKS KSKS KLKL KLKL “sin2  1 ” =  0.23(stat) “sin2  1 ” =  0.56(stat)

75 Belle 2006: tCPV in B 0   'K 0 _ 532M BB 'KS'KS 'KS'KS 'KL'KL 'KL'KL “sin2  1 ” =  0.11(stat) “sin2  1 ” =  0.24(stat)

76 Belle 2006: tCPV in B 0   'K 0 “sin2  1 ” with subsamples Errors are statistical only

77 Belle 2006: tCPV in B 0   'K 0 Significance of tCPV S = 0 ruled out with >5.6  at any A

78

79

80 B 0 →  +  − decay C =−A 2.3  diff. btw. Belle and BaBar

81

82

83

84 (1.4  b/w BaBar and Belle)

85

86

87

88 UTfit:  from , ,  All combine d 

90 The Kobayashi-Maskawa weak phase (0,0)(0,1) _ _ ( ,  ) 1()1() 3()3() 2()2() Normalized with |VcdVcb*|  =  (1  2 /2)  =  (1  2 /2) In particular, V td = |V td |exp(  i  1 ) V ub = |V ub |exp(  i  3 ) A 3 3 generations  CP-violating phase

91 What ’ s CP violation ? It is a partial rate asymmetry ! |B  |f   1 = |  1 |e is e i   2 = |  2 |e is’ e i  ’ |B  |f   1 = |  1 |e is e  i   2 = |  2 |e is’ e  i  ’ CP  ’: weak phase diff. : previous slide s  s’: static phase diff. : FSI, Resonance,  m  ’: weak phase diff. : previous slide s  s’: static phase diff. : FSI, Resonance,  m

92 Wolfenstein parameterization

93 Inclusive e ’ s at the ϒ (4S) Belle CLEO result in ~1980 Tribute from S. Olsen

94 Back to the Future 1981  2006

95 PEP-II KEKB Belle BaBar 9GeV (e  )  3.1GeV (e + ) peak luminosity: 1.12  cm  2 s  1 Two Asymmetric-energy B Factories 8GeV (e  )  3.5GeV (e + ) peak luminosity: 1.65  cm  2 s  1 world record ! Charged tracking/vertexing SVD: SVD: (-7/03) 3-layer DSSD Si µstrip (-7/03) 3-layer DSSD Si µstrip (8/03-) 4-layer (8/03-) 4-layer CDC: 50 layers (He-ethane) CDC: 50 layers (He-ethane) Hadron identification CDC: dE/dx CDC: dE/dx TOF: time-of-flight TOF: time-of-flight ACC: Threshold Cerenkov ACC: Threshold Cerenkov(aerogel)Electron/photon ECL: CsI calorimeter ECL: CsI calorimeter Muon/K L KLM: Resistive plate KLM: Resistive platecounter/iron Charged tracking/vertexing 5-layer DSSD Si µstrip 5-layer DSSD Si µstrip 40 layers (He-isobutane) 40 layers (He-isobutane) Hadron identification tracker: dE/dx tracker: dE/dx DIRC imaging Cerenkov DIRC imaging CerenkovElectron/photon CsI calorimeter CsI calorimeter Muon/K L Instrumented flux return Instrumented flux return

96 PEP-II & BaBar L max = 1.12 X cm – 2 s – 1  L dt = 371 fb – Υ (4S)+off(~10%)} (>3.7x10 8 B events) Charged tracking/vertexing 5-layer DSSD Si µstrip 5-layer DSSD Si µstrip 40 layers (He-isobutane) 40 layers (He-isobutane) Hadron identification tracker: dE/dx tracker: dE/dx DIRC imaging Cerenkov DIRC imaging CerenkovElectron/photon CsI calorimeter CsI calorimeter Muon/K L Instrumented flux return Instrumented flux return 11 nations, 80 institutes, 623 persons

97 e + source Ares RF cavity Belle detector World record: L = 1.6 x /cm 2 /sec SCC RF(HER) ARES(LER) The KEKB Collider 8 x 3.5 GeV 22 mrad crossing angle ~1 km in diameter Mt. Tsukuba KEKB Belle since 1999

98 Belle detector K L  detector 14/15 layer RPC+Fe Electromagnetic Calorimeter CsI(Tl) 16X 0 Aerogel Cherenkov Counter n = 1.015~1.030 Si Vertex Detector 4-layer DSSD TOF counter 3.5 GeV e + Central Drift Chamber momentum, dE/dx 50-layers + He/C 2 H 6 charged particle tracking K/  separation B vertex Muon / K L identification ,  0 reconstruction e +-, K L identification 8.0 GeV e -

99  = (Belle) 0.56 (BaBar) Principle of tCPV measurement CP-side 1.Fully reconstruct one B-meson which decays to CP eigenstate electron positron  (4S) resonance B1B1 B2B2 ++ -- K S/L J/ 

100  = (Belle) 0.56 (BaBar) Principle of tCPV measurement CP-side Flavor tag and vertex reconstruction 1.Fully reconstruct one B-meson which decays to CP eigenstate 2.Tag-side determines its flavor (effective efficiency = 30%) 3.Proper time (  t) is measured from decay-vertex difference (  z) electron positron  (4S) resonance B1B1 B2B2 ++ -- K+K+ --  ++ -- K S/L J/   z ~ 200  m (Belle) B0B0 B0B0 _

101 b g s modes and their “ cleaness ” in SM taken from a review “CP violation” in PDG2005 (D.Kirkby, Y.Nir) pure tree b  cud D CP  0 D CP Ks (Vcb*Vud)T + (Vub*Vcd)T 2 + ucd

102 Experimental Challenge B 0  J/  K S B0  KSB0  KS Tree Penguin We need 1) large number of BB pairs 2) additional background rejection Event Shape (Jet-like) (Spherical) Mbc Signal Likelihood

103 Signal Likelihood (LHR) projection Mbc projection LHR Mbc Clear separation between signal and background Clear separation between signal and background B 0   Ks   Ks signal   Ks signal