CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.

Slides:



Advertisements
Similar presentations
Fall Ch 8- DNS© Jörg Liebeherr and Magda El Zarki, 2002 Domain Name Service (DNS)
Advertisements

DNS – Domain Name system Converting domain names to IP addresses since 1983.
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Spring 2012 Spring 2012.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
1 Application layer r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing.
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Name Resolution and DNS. Domain names and IP addresses r People prefer to use easy-to-remember names instead of IP addresses r Domain names are alphanumeric.
Chapter 2 Application Layer
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction 1 Lecture 8 Application Layer (DNS, p2p) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
NET0183 Networks and Communications Lecture 25 DNS Domain Name System 8/25/20091 NET0183 Networks and Communications by Dr Andy Brooks.
CS 4396 Computer Networks Lab
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts: – IP address (32 bit) - used for addressing datagrams – “name”, e.g.,
DNS & P2P A PPLICATIONS د. عـــادل يوسف أبو القاسم.
Domain Name System (DNS)
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 10 Omar Meqdadi Department of Computer Science and Software Engineering University.
DNS. 2 DNS: Domain Name System DNS services Hostname to IP address translation Host aliasing – Canonical and alias names Mail server aliasing Load distribution.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
CS 471/571 Domain Name Server Slides from Kurose and Ross.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
DNS: Domain Name System
Review: –Which protocol is used to move messages around in the Internet? –Describe how a message is moved from the sender’s UA to the receiver’s.
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
DNS: Domain Name System People: many identifiers: – SSN, name, Passport # Internet hosts, routers: – IP address (32 bit) - used for addressing datagrams.
Lecture 6: Video Streaming 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
25.1 Chapter 25 Domain Name System Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CENG4430 (Spring 2011) 3-1 Lecture 3: Application Layer  What to learn?  HTTP Proxy  FTP – file transfer protocol  DNS – domain name system  Packet.
2: Application Layer1 Chapter 2 outline r 2.1 Principles of app layer protocols r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail r 2.5 DNS r 2.6 Socket.
DNS. 2 DNS: Domain Name System DNS services Hostname to IP address translation Host aliasing – Canonical and alias names Mail server aliasing Load distribution.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 8 Omar Meqdadi Department of Computer Science and Software Engineering University of.
2: Application Layer1 DNS: Domain Name System People have many identifiers: SSN, name, passport number Internet hosts, routers have identifiers, too: IP.
CPSC 441: DNS 1. DNS: Domain Name System Internet hosts: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., - used by.
CS 3830 Day 10 Introduction 1-1. Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer Networking book.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
1 Kyung Hee University Chapter 19 DNS (Domain Name System)
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
1. Internet hosts:  IP address (32 bit) - used for addressing datagrams  “name”, e.g., ww.yahoo.com - used by humans DNS: provides translation between.
Application Layer, 2.5 DNS 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
Spring 2006 CPE : Application Layer_DNS 1 Special Topics in Computer Engineering Application layer: Domain Name System Some of these Slides are.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
2: Application Layer 1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
Chapter 17 DNS (Domain Name System)
Introduction to Networks
Chapter 19 DNS (Domain Name System)
Session 6 INST 346 Technologies, Infrastructure and Architecture
Chapter 9: Domain Name Servers
Introduction to Communication Networks
No Class on Friday There will be NO class on: FRIDAY 1/27/17
Chapter 2 Application Layer
Chapter 7: Application layer
Cookies, Web Cache & DNS Dr. Adil Yousif.
Chapter 19 DNS (Domain Name System)
DNS: Domain Name System
FTP, SMTP and DNS 2: Application Layer.
Presentation transcript:

CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy

2: Application Layer2 Roadmap: Application layer  Web caches (proxy server)  DNS

2: Application Layer3 Web caches (proxy server)  user sets browser: Web accesses via cache  browser sends all HTTP requests to cache  object in cache: cache returns object  else cache requests object from origin server, then returns object to client Goal: satisfy client request without involving origin server client Proxy server client HTTP request HTTP response HTTP request origin server origin server HTTP response

2: Application Layer4 More about Web caching  cache acts as both client and server  typically cache is installed by ISP (university, company, residential ISP) Why Web caching?  reduce response time for client request  reduce traffic on an institution’s access link.  Internet dense with caches: enables “poor” content providers to effectively deliver content (but so does P2P file sharing)

2: Application Layer5 Caching example Assumptions  average object size = 1,000,000 bits  avg. request rate from institution’s browsers to origin servers = 15 req/sec  delay from internet router to any origin server and back to router = 2 sec Consequences  utilization on LAN = (15 requests/sec). (1Mbits/request)/(100Mbps) = 15%  utilization on access link = (15 requests/sec). (1Mbits/request)/(15Mbps) = 100%  total delay = Internet delay + access delay + LAN delay = 2 sec + minutes + milliseconds origin servers public Internet institutional network 100 Mbps LAN 15 Mbps access link institutional cache Internet router

2: Application Layer6 Caching example (cont) possible solution  increase bandwidth of access link to, say, 100 Mbps consequence  utilization on LAN = 15%  utilization on access link = 15%  Total delay = Internet delay + access delay + LAN delay = 2 sec + msecs + msecs  often a costly upgrade origin servers public Internet institutional network 100 Mbps LAN 100 Mbps access link Internet router

2: Application Layer7 Caching example (cont) possible solution: install cache  suppose hit rate is 0.4 consequence  40% requests will be satisfied almost immediately  60% requests satisfied by origin server  utilization of access link reduced to 60%, resulting in negligible delays (say 10 msec)  total avg delay = Internet delay + access delay + LAN delay =.6*(2) secs +.4*milliseconds < 1.4 secs origin servers public Internet institutional network 100 Mbps LAN 15 Mbps access link institutional cache Internet router

2: Application Layer8 Conditional GET  Goal: don’t send object if cache has up-to-date cached version  cache: specify date of cached copy in HTTP request If-modified-since:  server: response contains no object if cached copy is up-to-date: HTTP/ Not Modified cache server HTTP request msg If-modified-since: HTTP response HTTP/ Not Modified object not modified HTTP request msg If-modified-since: HTTP response HTTP/ OK object modified

2: Application Layer9 DNS: Domain Name System People: many identifiers:  SSN, name, passport # Internet hosts, routers:  IP address (32 bit) - used for addressing datagrams  “name”, e.g., ww.yahoo.com - used by humans Q: map between IP addresses and name ? Domain Name System:  distributed database implemented in hierarchy of many name servers  application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)  note: core Internet function, implemented as application- layer protocol  complexity at network’s “edge”

DNS DNS services  Hostname-to-IP-address translation  host aliasing  Canonical, alias names  mail server aliasing  load distribution  replicated Web servers: set of IP addresses for one canonical name Why not centralize DNS?  single point of failure  traffic volume  distant centralized database  Maintenance: update huge DB doesn’t scale! 2: Application Layer 10

2: Application Layer 11 Root DNS Servers com DNS servers org DNS serversedu DNS servers poly.edu DNS servers umass.edu DNS servers yahoo.com DNS servers amazon.com DNS servers pbs.org DNS servers Distributed, Hierarchical Database Client wants IP for 1 st approx:  client queries a root server to find com DNS server  client queries com DNS server to get amazon.com DNS server  client queries amazon.com DNS server to get IP address for

2: Application Layer12 DNS: Root name servers  contacted by local name server that can not resolve name  root name server:  contacts authoritative name server if name mapping not known  gets mapping  returns mapping to local name server 13 root name servers worldwide b USC-ISI Marina del Rey, CA l ICANN Los Angeles, CA e NASA Mt View, CA f Internet Software C. Palo Alto, CA (and 36 other locations) i Autonomica, Stockholm (plus 28 other locations) k RIPE London (also 16 other locations) m WIDE Tokyo (also Seoul, Paris, SF) a Verisign, Dulles, VA c Cogent, Herndon, VA (also LA) d U Maryland College Park, MD g US DoD Vienna, VA h ARL Aberdeen, MD j Verisign, ( 21 locations)

2: Application Layer 13 TLD and Authoritative Servers  Top-level domain (TLD) servers:  responsible for com, org, net, edu, etc, and all top- level country domains uk, fr, ca, jp.  Network Solutions maintains servers for com TLD  Educause for edu TLD  Authoritative DNS servers:  organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web, mail).  can be maintained by organization or service provider

2: Application Layer 14 Local Name Server  does not strictly belong to hierarchy  each ISP (residential ISP, company, university) has one.  also called “default name server”  when host makes DNS query, query is sent to its local DNS server  acts as proxy, forwards query into hierarchy

2: Application Layer15 requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server DNS name resolution example  Host at cis.poly.edu wants IP address for gaia.cs.umass.edu iterated query: rcontacted server replies with name of server to contact r“I don’t know this name, but ask this server”

2: Application Layer 16 requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server 3 recursive query: rputs burden of name resolution on contacted name server rheavy load? DNS name resolution example

2: Application Layer17 DNS: caching and updating records  once (any) name server learns mapping, it caches mapping  cache entries timeout (disappear) after some time (often 48 hours)  TLD servers typically cached in local name servers Thus root name servers not often visited