Status of LEPS Mizuki Sumihama For LEPS collaboration Gifu university New hadron 2011.3.1  Introduction of LEPS  Previous work  Update (new setup) 

Slides:



Advertisements
Similar presentations
Hadron physics with GeV photons at SPring-8/LEPS II
Advertisements

 photoproduction with linearly polarized photons at SPring-8 SENDAI03 16 th June, 2003 Tsutomu Mibe (Research Center for Nuclear Physics, Osaka univ.,
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
May/27/05 Exotic Hadron WS 1 Hypothetical new scaler particle X for  + and its search by the (K +, X + ) reaction T. Kishimoto Osaka University.
1 Elementary Reactions at LEPS/SPring-8 J. K. Ahn Pusan National University Oct. 11, 2006.
Search for  + via K + p   + X reaction with high-resolution spectrometer system Kyoto University S. Dairaku for E559 collaboration.
 *(1520) CrossSection Zhiwen Zhao Physics 745. Λ BARYONS (S = − 1, I = 0) Λ 0 = u d s Λ(1520) D 03 I( J P ) = 0( 3/2 − ) Mass m = ± 1.0 MeV [a]
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
Experimental results of K + photoproduction at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration HYP2003 Oct. 16th Introduction.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
25 May 2005SPring-8/LEPS GeV photon beam experiments at the SPring-8 laser-backscattering facility Introduction LEPS (Laser-Electron.
Coherent  -meson Photo-production from Deuterons Near Threshold Wen-Chen Chang Wen-Chen Chang for LEPS collaboration Institute of Physics, Academia Sinica,
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Exotics search at SPring-8 M. Niiyama, Kyoto Univ.  Introduction of SPring-8/LEPS  Exotics search in backward  production  Photoproduction of  (1405)
Status and Prospects of Hadron Physics at LEPS in Japan Takashi Nakano (RCNP, Osaka Univ.) International School of Nuclear Physics 37 th Course: Probing.
Hadron physics with meson photoproduction at LEPS/SPring-8 Tomoaki Hotta (RCNP, Osaka University) for LEPS Collaboration MESON 2010 CRACOW, POLAND 12 JUNE.
Atsushi Tokiyasu (for LEPS collaboration) Experimental Nuclear and Hadronic Physics Laboratry, Department of Physics, Kyoto University.
Yusuke TSUCHIKAWA R. Hashimoto, Q. He, T. Ishikawa, S. Masumoto, M. Miyabe, N. Muramatsu, H. Shimizu, Y. Tajima, H. Yamazaki, R. Yamazaki, and FOREST collaboration.
Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron [Contents] 1. Introduction 2. Principle of experiment 3. Experiment at.
Wen-Chen Chang Outline Laser-Electron Photon from Synchrotron facility. Uniqueness of SPring-8 LEPS experiment. –Vector Meson Photo-Production near production.
Workshop on LEPS/SPring-8 new beamline, 28~29 July 2005, RCNP, Japan  + photoproduction with vector K* (including other recent results) Seung-il Nam *1,2.
Measurement of the η’N scattering length at LEPS2 2014/2/20 Keigo Mizutani Kyoto Univ.
Rosen07 Two-Photon Exchange Status Update James Johnson Northwestern University & Argonne National Lab For the Rosen07 Collaboration.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
1 Single  0 photoproduction at SPring-8/LEPS Mizuki Sumihama Osaka university, RCNP JPS meeting March 2007.
K +  and K +  0 photoproduction at SPring-8/LEPS Mizuki Sumihama Department of physics Osaka Univ. for LEPS collaboration 1. Introduction 2. Experiment.
1 Tomoaki Hotta (RCNP, Osaka Univ.) for The LEPS Collaboration Cracow Epiphany Conference, Jan 6, 2005 Introduction LEPS experiment Results from new LD.
09/10/2005NSTAR Graal collaboration1 The Graal collaboration results and prospects Presented by Carlo Schaerf Università di Roma “Tor Vergata” and.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Differential cross sections for K + photoproduction at SPring-8/LEPS. Mizuki Sumihama Department of physics Tohoku university For LEPS collaboration JPS.
MC Check of Analysis Framework and Decay Asymmetry of  W.C. Chang 11/12/2005 LEPS Collaboration Meeting in Taiwan.
Recent results and future prospects of the Laser Electron Photon experiment at SPring-8 T. Hotta (RCNP Osaka University) the LEPS collaboration 第六届中日核物理研讨会,
Search for the omega-mesic nuclei at SPring-8 LEPS Norihito Muramatsu RCNP, Osaka University 17 Feb
Takashi NAKANO (RCNP, Osaka University) Joint Symposium of 'Exotic Hadron' and 'Hadrons in Nuclei' New Frontiers in QCD 2010 Feb. 18th LEPS Experiments.
The  p  K +  and  p  K +  0 reactions at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration HYP2006 Oct. 13th 2006.
Hyperon Photoproduction by Linearly Polarized Photons at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration SPIN2006 Oct. 6th 2006.
Pentaquark search at SPring-8 LEPS Norihito Muramatsu RCNP, Osaka University For the LEPS Collaboration 22 Apr ~~~ Today’s menu ~~~
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
09/10/2005NSTAR Graal collaboration1 The Graal collaboration results and prospects Presented by Carlo Schaerf Università di Roma “Tor Vergata” and.
**PhD Dec (CLAS Analysis Note). OZI evading/respecting process 49.2 ± 0.6 % 34 ± 0.5 % Experimentally this decay mode is (15.3 ± 0.4) % mode is.
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
Photoproduction of the  (1385) resonance at LEPS K. Hicks & D. Keller, Ohio U. LEPS Collaboration Meeting May 1, 2008.
Comparison between ūu and d̄d productions by the γp→ π - Δ ++ and π + Δ 0 reactions at forward π angles at E γ = GeV Oct/5/2015 RCNP, Osaka University.
Search for the  + in photoproduction experiments at CLAS APS spring meeting (Dallas) April 22, 2006 Ken Hicks (Ohio University) for the CLAS Collaboration.
(RCNP, Osaka University) for the LEPS collaboration
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Recent Results from LEPS/SPring-8 Ken Hicks Ohio University, USA Sept. 21, 2009 on behalf of LEPS collaboration International Conference on Quark Nuclear.
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
1 K + Photoproduction and  0 photoproduction by Linearly Polarized Photons at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration.
Quark Hadron Physics and LEPS Takashi Nakano RCNP, Osaka University Physic Motivation LEPS facility  photo-production Pentaquark  + Summary LEPS ASPE2010,
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
15 cm Plots of missing mass spectrum and 90% interval for width of 0.5 and 10 MeV. Color lines show upper limit, lower limit and sensitivity. Search for.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Measurement of Photoproduction of  (1020) Mesons on Protons by Linearly Polarized Photons EMI2001, December 5th, 2001 T.Mibe for the LEPS collaboration.
Production of  Mesons on Protons near Threshold by Linearly Polarized Photon at SPring-8/LEPS Wen-Chen Chang for LEPS collaboration Institute of Physics,
Development of polarized HD target for LEPS experiments RCNP Osaka University Japan Hideki Kohri.
1 Introduction and status of the LEPS Status of the  + Study New LEPS LD2 data Summary Recent results from LEPS T. Nakano ( RCNP, Osaka University ) MENU04.
Photoproduction of      and     on the proton for comparing ūu and d̄d productions at LEPS/SPring-8 May/16/2016 RCNP, Osaka University, Japan.
Nov/25/2016 RCNP, Osaka University, Japan Hideki Kohri
L*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set
Precision Measurement of η Radiative Decay Width via Primakoff Effect
M. Miyabe, K. Horie, S. Shimizu, W. C. Chang and LEPS collaboration
Pion and kaon photoproduction at SPring-8/LEPS
The np -> d p0 reaction measured with g11 data
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
Presentation transcript:

Status of LEPS Mizuki Sumihama For LEPS collaboration Gifu university New hadron  Introduction of LEPS  Previous work  Update (new setup)  Status of present work

2 Super Photon ring-8 GeV SPring-8 8 GeV electron Intensity is 100 mA. Circumference: 1436 m 62 beamlines LEPS

3 b) Laser hutch a) SPring-8 SR ring c) Experimental hutch Inverse Compton  -ray Laser light 8 GeV electron Recoil electron Tagging counter Collision Laser Electron Photon beam Energy spectrum LEP Bremsstrahlung Backward-Compton scattering 36m 70m

4 Cross section(Energy spectrum) Linear Polarization Polarization of photon beam is calculated by using photon energy event by event. Linearly polarized photons 351 nm 257 nm tagged 351 nm 257 nm tagged

5 LEPS spectrometer – forward acceptance  5 1m1m TOF wall MWDC 2 MWDC 3 MWDC 1 Dipole Magnet (0.7 T) Liquid Hydrogen Target (15 cm thick ) Start counter Silicon Vertex Detector Aerogel Cherenkov (n=1.03) ± 10 o in y ± 20 o in x

Particle identification 6 Time resolution ~120ps Momentum resolution ~5(14) MeV for 1(2) GeV/c Kaon

Previous works at LEPS Linearly polarized photon beam E  = 1.5 – 2.4 GeV / W p target = 1.9 – 2.3 GeV Target Liquid hydrogen / deuteron / Li, Al, Cu, C Channels hyperon :  p  K + , K +  0, K + , K + ,     n  K +  -, K +    0,  meson :  p   p,  d   d,  N   N,  A   A   p   p,  p    p,   (petaquark) :  n(C) ,  n(d)  K -  +  Missing baryon resonances (N*,  *), ~2000MeV  Exotic hadron,    Time projection chamber

Advantage of photon beam  N     N,  N,  N,  ’N,  N,  N, KY, KY* …, simultaneously Polarization observables –linearly polarized photon, parity filter polarized target under construction Isospin filter :  ’  I=0,  N* only  I=1,  N* and  * Strangeness channel (ss-bar) K , K , K  *, K  *,  N,  N, K -   8 Multi-channel analysis

9 Many *, or ** states Table of baryon excited states –PDG assessment 1700 MeV LEPS range ***, or **** states

10 Backward meson photoproduction  Data    ’  Missing Mass 2 (GeV 2 /c 4 ) E  = GeV cos  cm =  0.9 Fitting result  p  p x Background  p  p   p  p   p  p      Look at   p,  p,  ’p, and  p, simultaneously

11 Differential cross sections d  /d  vs. √s Orsay(PR 164, 1623(1967)) DESY(PRL 20, 230(1968)) cos  cm  LEPS cos  cm      1232 ~1600 ~1720 ~  ~1660 ~1720 ~ ? New data Preliminary 00  3 GeV

12 Photon asymmetries vs. cos  cm LEPS data, other data 70’s Strong angular dependence SAID MAID2007 NPB104, 253(76), NPB154, 492(79) 00  3 GeV

Resonances strongly coupled to .  S(1535) --- contain ss-bar  P(1710/1720)  ? 13 S(1535) P(1720/1710) Higher mass resonance?  photoproduction 

14 Differential cross sections d  /d  vs. W LEPS data SAID -partial-wave analysis Wide structure is seen above W=2.0 GeV Jlab/CLAS data Bonn/ELSA data 

15  ’   Comparison of    ’ and  photoproductions cos  cm =  0.8 ~  0.7     ’   3 GeV  

16 d  /du vs. √ s at small |u| 0.0<u<0.02  0.1<u<0.0 Daresbury data, PLB72,144(1977) √s (GeV) d  /du LEPS ? Smaller than Regge trajectory s -3.0 s -3.9   3 GeV

17 d  /dt  photoproduction at forward angles E  (GeV)  3 GeV T. Mibe, PRL 95, (2005)

Measurement of γp  K + Λ(1405) and K + Σ 0 (1385) M. Niiyama et al, Phys.Rev.C78:035202,2008 target : H 2 (CH 2 – C) GeV GeV Λ(1405) 0.43   Σ 0 (1385) 0.80   d  /d  Remarkable decreasing  different production mechanism or/and internal structure? Decay particles are detected by time-projection chamber  LH2

Study of  + (  d  K - K + np) PRC 79, T.Nakano et al., (2009) Higher statistics (3 times) in data taken in Still under analysis. 19 ++  n  K -  +  K - K + n

20  E  max = 2.4 GeV  3.0 GeV Two laser injection Energy dependence at higher energy with fwd spec. and LH2 and LD2 in 2007 ~  New Time-projection chamber E γ dependence of Λ(1405),  (1385)  Liquid hydrogen target was used. Total luminosity : 3 times larger than previous work  Neutron counter new channel with n in 2010~ Upgrade (new setup) of LEPS

 beam Forward spectrometer p / K /   (1405)  Upgrade of detectors  p  K + x  p  p x Missing mass Time-projection chamber (TPC) target cos  cm = ~ 0.6 – 1.0  p  K +  *  p  p  Neutron counter

A typical efficiency is 20%.  d(pn      n  n  K -  +  K - K + n  p  K s  +  K s K + n  n   n  n  K -  +  K - K + n  p  K s  +  K s K + n Neutron detector Just behind the TOF wall – 1.6 m (y) x 3.8 m (x) – Cover acceptance of fwd spectrometer By K. Hick, Ohio univ.

Setup of time projection chamber with LH2/LD2 23

Time projection chamber 24 Pad planefull view event display x-y resolution : mm z resolution : ~700mm Measurement of  p  K + Λ(1405) and K + Σ 0 (1385)  p   p,  p,  p.. PID with TPC p π+π+ π-π- K-K-

Analysis Spectrum of Σ 0 (1385) M(pπ - ) in the TPC Λ(1116) peak : ± GeV/c 2 missing mass spectrum of γ(p,K + ) X Λ(1116) Σ 0 (1192) Λ(1520) Σ 0 (1385) γ p  K + Σ 0 (1385)  K + Λ(1116) π 0  K + pπ - π 0 TPCspectrometer VERY PRELIMINARY Λ(1116) By Y. Nakatsugawa

Analysis Spectrum of Λ(1405) γ p  K + Λ(1405)  K + Σ ± π  K + n π + π - spectrometer TPC ± VERY PRELIMINARY missing mass spectrum of γ(p,K + ) X Λ(1405) Λ(1520) By Y. Nakatsugawa

27 Summary     photoproduction  strong angular / energy dependence   missing resonance?  Λ(1405) / Σ 0 (1385) /  (1520) photoproduction remarkable energy dependence   + under analysis with 3 times statistics. under analysis  Upgrade of LEPS E  max = 2.4 GeV  3.0 GeV with LH2 and LD2 in 2007 ~ New Time-projection counter with LH2 E γ dependence of Λ(1405),  (1385) Liquid hydrogen target was used. Total luminosity : 3 times larger than previous work Neutron counter new channel with n

28 Recent publication: Measurement of Spin-Density Matrix Elements for  -Meson Photoproduction from Protons and Deuterons Near Threshold. W.C. Chang et al., Phys.Rev.C82:015205,2010. Near-Threshold Λ(1520) Production by the γ p + Λ(1520) Reaction at Forward K + Angles, H. Kohri, et al., Phys. Rev. Lett. 104, (2010)Phys. Rev. Lett. 104, (2010) Measurement of the incoherent γd→φpn photoproduction near threshold, W.C. Chang, M. Miyabe, T. Nakano, et al., Phys.Lett.B684:6,2010Phys.Lett.B684:6,2010 Backward-angle η photoproduction from protons at E γ = GeV, M. Sumihama, et al., Phys. Rev. C 80, (R) (2009)Phys. Rev. C 80, (R) (2009) Near-threshold photoproduction of Λ(1520) from protons and deuterons, N. Muramatsu, J.Y. Chen, W.C. Chang, et al., Phys.Rev.Lett.103:012001,2009Phys.Rev.Lett.103:012001,2009 Evidence of the Θ + in the γd → K + K - pn reaction, T. Nakano, N. Muramatsu, et al., Phys.Rev.C79:025210,2009Phys.Rev.C79:025210,2009 Cross Sections and Beam Asymmetries for K + Σ *- photoproduction from the deuteron at E γ = 1.5-GeV GeV, K. Hicks, D. Keller, H. Kohri, et al., Phys.Rev.Lett.102:012501,2009Phys.Rev.Lett.102:012501,2009 Photoproduction of Λ(1405) and Σ 0 (1385) on the proton at E γ = GeV, M. Niiyama, H. Fujimura, et al., Phys.Rev.C78:035202,2008Phys.Rev.C78:035202,2008 ……

29 LEPS collaboration D.S. Ahn, J.K. Ahn, H. Akimune, Y. Asano, W.C. Chang, S. Date, H. Ejiri, H. Fujimura, M. Fujiwara, K. Hicks, K. Horie, T. Hotta, K. Imai, T. Ishikawa, T. Iwata, Y.Kato, H. Kawai, Z.Y. Kim, K. Kino, H. Kohri, N. Kumagai, Y.Maeda, S. Makino, T. Matsumura, N. Matsuoka, T. Mibe, M. Miyabe, Y. Miyachi, M. Morita, N. Muramatsu, T. Nakano, Y. Nakatsugawa, M. Niiyama, M. Nomachi, Y. Ohashi, T. Ooba, H. Ookuma, D. S. Oshuev, C. Rangacharyulu, A. Sakaguchi, T. Sasaki, T. Sawada, P. M. Shagin, Y. Shiino, H. Shimizu, S. Shimizu, Y. Sugaya, M. Sumihama H. Toyokawa, A. Wakai, C.W. Wang, S.C. Wang, K. Yonehara, T. Yorita, M. Yosoi and R.G.T. Zegers a Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka , Japan b Department of Physics, Pusan National University, Pusan , Korea c Department of Physics, Konan University, Kobe, Hyogo , Japan d Japan Atomic Energy Research Institute, Mikazuki, Hyogo , Japan e Institute of Physics, Academia Sinica, Taipei 11529, Taiwan f Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo , Japan h School of physics, Seoul National University, Seoul, Korea i Department of Physics, Ohio University, Athens, Ohio 45701, USA j Department of Physics, Kyoto University, Kyoto, Kyoto , Japan k Laboratory of Nuclear Science, Tohoku University, Sendai , Japan l Department of Physics, Yamagata University, Yamagata, Yamagata , Japan m Department of Physics, Chiba University, Chiba, Chiba , Japan n Wakayama Medical College, Wakayama, Wakayama , Japan o Department of Physics, Nagoya University, Nagoya, Aichi , Japan p Department of Physics, Osaka University, Toyonaka, Osaka , Japan q Department of Physics, University of Saskatchewan, Saskatoon, S7N 5E2, Canada r Department of Applied Physics, Miyazaki University, Miyazaki , Japan 29

30 Photon beam asymmetry with Linearly Polarized Photons Production Plane //  Photon asymmetry =  1 Photon Polarization p p  Production Plane   Photon asymmetry = +1   

W ( √s ) = 1.9 – 2.3 GeV cos  cm =  1 ~  0.6 (  cm = 123 o – 180 o ) Resonance term +Born term  M p p, N*,  * s-channel Diagram of meson photoproduction in tree level Forward Backward Meson exchange Resonances Nucleon exchange 31  p M p p, N*,  * u-channel t-channel  M p p M g NNM g NN*M …. Present data

32 Mass-reverse problem of three quark model uud(L=1) ½ - : uud(n=1) ½ + : uds(L=1) ½ - : harmonic oscillator : E = ( 2n + L + 3/2 ) h  d u u N*(1535) s s +qq pair solve this problem uud[ss] : S 11 (1535) uud[dd] : P 11 (1440) uds[uu] :  *(1405) B. S. Zou, NPA790, 110c should be the lowest S 11 (1535) P 11 (1440)  *(1405)  strong coupling to  N

33 Evidence of resonances in other reactions BES : N* from J/ , J/        production

34 Evidence of resonances BES : J/        PRL 97, (2006) N*(1440) N*(1535).. N*(1650).. N*(2070) Particle Data Group P 11 (2100)  N)/  tot = 0.61 in Pitt-ANL model Phys. Rep. 328, 181(2000) N*   N N*   N

35  + p   + + n ….N*?  + p   o + p ….  *? cos  cm   (1232) N(2190) 7/2 -  (2420) 11/2+ N(1720) 3/2+  (1920) 3/2+ PRD vol.6, 1 (1972)

36 d  /du vs. √ s 36 W=√s (GeV) Slopes are determined with the data at W<2.1 GeV. large slope 00

37 Differential cross sections d  /d  vs. W LEPS data SAID -partial-wave analysis Wide structure is seen above W=2.0 GeV 

Previous Work of LEPS M. Niiyama et al, Phys.Rev.C78:035202,2008 Differential cross sections for γp  K + Λ(1405) and K + Σ 0 (1385). E γ = 1.5 – 2.4 GeV target : H 2 (CH 2 – C) different line shapes of Λ(1405) for Σ + π - and Σ - π + decay mode.  isospin interference This work Higher E γ  new information about E γ dependence of the cross section of Λ(1405) Liquid hydrogen target was used.  no subtraction, more precise results total luminosity : 3 times larger than previous work This work Higher E γ  new information about E γ dependence of the cross section of Λ(1405) Liquid hydrogen target was used.  no subtraction, more precise results total luminosity : 3 times larger than previous work remarkable decrease of the production ratio of Λ(1405) to Σ 0 (1385) at higher E γ region.  different production mechanism and internal structure? Λ(1405) / Σ 0 (1385) = 0.54  0.17 at GeV =  at GeV

K + Missing mass spectrum  p  K + Y

Backward K +/0 angles Because of AC veto against  n  K 0  (1520); K 0 S  +  -,  (1520)  K - p was detected to compare  p and  n cross sections.  (1520) was identified by M(K - p) in LH 2 and LD 2 data. Background contributions were estimated by two complementary methods using MC (dashed line) and sideband (hatched area). LH 2 (0.61 pb -1 )LD 2 (1.15 pb -1 )  K-K-  (1520) K +/0 p p/n

41 u-channel process is dominant at very backward angles. Regge theory ; d  /du~s 2  (u)-2 at high energy.  (0) =  1/2 for N and N* exchange Higher energy region  =Re(  (u)) u=Mass2(GeV2) 9/2 7/2 5/2 3/2 1/2 -1/2 N(938) N(1680) N(2220)  (1232)  (1950) Baryon Regge trajectory

● Pad size : 5.1mm x 14.5mm gap : 0.5mm total 9layers 225pads/ 1sector (1350pads /6sector) ● Wire anode wire:27wires on 1sector Each wire strides 3sectors  total 54wires ・gate wires and shield wires are located above the anode/potential wires ・anode wire & potential wire wire spacing= 2.5mm (anode spacing 5mm) distance from pad plane = 4mm gate wire shield anode/potential Time Projection Chamber

● drift region : drift electrode~shield wire= 752mm ● drift velocity calculation with GARFIELD--- maximum at 160V/cm (~ 52mm/μs)  drift voltage = 12.1kV ● electric field definition with field cage (strip electrodes) ● Nitrogen gas is used to electrically isolate the field cage from the outer of the TPC. ● P10 gas Ar90% CH 4 10% Pad plane shield wire drift electrode P10 gas N 2 gas field cage strip electrode Time Projection Chamber outside inside

Analysis Particle Identification, Missing Mass spectrum of p (γ, K + ) X PID with Spectrometer PID with TPC p π+π+ π-π- K-K- p π+π+ π-π- K-K- K+K+ momentum vs. mass x charge Mass is calculated using track information. (momentum, TOF, track length) energy deposit vs. momentum x charge (plot for events in which K + is identified by the spectro- meter) Λ(1116) Σ 0 (1192) Λ(1520) Σ 0 (1385)/Λ(140 5) missing mass spectrum of p(γ,K + )X K + is identified by forward spectrometer. Σ 0 (1385) and Λ(1405) can not be separated due to their large width. Selection cuts using decay products detected by the TPC The yields of Hyperons are extracted from the missing mass spectrum of γ p  K + X.