Introduction to Material Science

Slides:



Advertisements
Similar presentations
Material Science Introduction.
Advertisements

ME 2105 Introduction to Material Science (for Engineers)
Chapter 1 Introduction to Materials Science.
Chapter 18: Electrical Properties
Engineering materials
ISSUES TO ADDRESS... Why does corrosion occur ? 1 What metals are most likely to corrode? How do temperature and environment affect corrosion rate? How.
Engr 2110 Introduction to Material Science (for Engineers) Dr. Richard R. Lindeke, Ph.D. B Met. Eng. University of Minnesota, 1970 Master’s Studies, Met.
MSE 227: Introduction to Materials Science & Engineering
Chapter :015 Materials Science Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure.
MSE XXX: Introduction to Materials Science & Engineering
1 Ice Breaking -About me Lecturer: C. W. Zanariah C. W. N. (PhD Analytical Chemistry) Lecturer: C. W. Zanariah C. W. N. (PhD Analytical Chemistry) Time:
Introduction to Manufacturing Sagar Kamarthi Associate Professor Dept. of Mechanical and Industrial Engineering Northeastern University, Boston.
Material Science and Materials Processing (Day 1) Class
Course Name : Material Science
Ceramics Mixture of metallic and non-metallic elements (clay products). Traditional: whiteware, tiles, brick, sewer pipe, pottery, and abrasive wheels.
ME 2105 Introduction to Material Science (for Engineers) Dr. Richard R. Lindeke, Ph.D. B Met. Eng. University of Minnesota, 1970 Master’s Studies, Met.
Chapter Palestine Polytechnic University Department of Mechanical Engineering ME251: Materials Science Course Objective: Introduce fundamental concepts.
Introduction to Materials Science & Engineering
Chapter ME215: Materials Science for ME Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure.
Chapter 1- CHEM 201: An Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in MSE You will learn about:
Materials - Metals Ken Youssefi PDM I, SJSU.
Forging new generations of engineers. Organics Metals and Alloys Polymers Ceramics Composites.
Manufacturing materials – IE251 Chapter 1 Chapter 1, Slide 1 IE 251 Manufacturing materials l Instructor: Dr. Mohamed Ali Eissa Saleh s Room: …………....
ME260 Mechanical Engineering Design II Instructor notes.
Manufacturing materials – IE251 Chapter 1 Chapter 1, Slide 1 IE 251 Manufacturing matesrial l Instructor: Dr. Mohamed Ali Eissa Saleh s Room: …………....
1 Properties of materials. 2 Classes of Materials Materials are grouped into categories or classes based on their chemical composition. Material selection.
Chapter 1- _____ ________. Required text: Materials Science and Engineering: An Introduction W.D. Callister, Jr., 6th edition, John Wiley and Sons, Inc.
MAT 033: Engineering Materials and Processes Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure.
Structural featureDimension (m) atomic bonding missing/extra atoms crystals (ordered atoms) second phase particles crystal texturing <
Fundamentals of Material Science and Engineering - Introduction Engr. Lina D. dela Cruz Chemical Engineering Department Technological Institute of the.
Inorganic, non-metallic compounds formed by heat. Examples:
Chapter ENGR 207: Materials Science & Engineering Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material.
Types of Materials Metals : –Strong, ductile –high thermal & electrical conductivity –opaque Polymers/plastics : Covalent bonding  sharing of e’s –Soft,
Engineering Materials Dr. Berlanty Iskander. Types of Materials.
MSE 227: Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in MSE You will learn about: material structure.
CE 241 MATERIALS SCIENCE Introduction
Chapter 1- CHEN 313: Chemical Engineering Materials Course Objective... Introduce fundamental concepts in Chem. Eng. Materials You will learn about: material.
Categories of Materials Metals and Alloys Polymers Ceramics Composites.
Engineering Materials
Chapter 1 - Chapter 1 Introduction Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved. FUNDAMENTALS OF Materials Science and Engineering AN.
Chapter 1- Introduction to Materials Science & Engineering Lesson Objective... Introduce fundamental concepts in MSE You will learn about: material structure.
Chapter 1- Reading: Chapter 1 & 2. Class notes are in: WEB SITE HW # 1: due Thursday, September 4, 2008: Problems 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, ANNOUNCEMENTS.
MATERIAL SCIENCE & METALLURGY PREPARED BY- JAY PUJARA Assist. Prof. IN MECHANICAL DEPARTMENT GEC, RAJKOT.
Dr. Owen Clarkin School of Mechanical & Manufacturing Engineering Summary of Material Science Chapter 1: Science of Materials Chapter 2: Properties of.
Chapter MSE XXX: Introduction to Materials Science & Engineering Course Objective... Introduce fundamental concepts in Materials Science You will.
HISTORICAL PERSPECTIVE  Materials are probably more deep-seated in our culture than most of us realize. Transportation, housing, clothing, communication,
Chapter Chapter 1 - Introduction What is materials science? Why should we know about it? Materials drive our society –Stone Age –Bronze Age –Iron.
Chapter MSE 101: Introduction to Materials Science & Engineering Course Objective... To introduce students to a wide range of modern materials engineering.
Rashesh Naik – Sujit Nakrani – Sachin Pal – Dhananjay Panchal Structure – Properties- Performance.
Chemical Engineering Department Materials Science
PHASE DIAGRAMS ISSUES TO ADDRESS... • When we combine two elements...
ENGINEERING MATERIALS
CHAPTER 1: INTRODUCTION
PRODUCT DESIGN MATERAIL
MSE : Introduction to Materials Science & Engineering
Chapter 1 - Introduction
ME 201: Engineering Materials
ME 2105 Introduction to Material Science (for Engineers)
Chapter 18: Electrical Properties
Ceramic introduction.
MSE XXX: Introduction to Materials Science & Engineering
CHAPTER 1: MATERIALS SCIENCE & ENGINEERING
Engineering Materials
Materials Science and Engineering
CERAMICS Structure and Properties of Ceramics Traditional Ceramics
Introduction to Materials Science
Introduction to Materials Science & Engineering
Introduction: Classification and Properties of Materials
MENG286: INTRODUCTION TO MATERIALS SCIENCE & ENGINEERING
PDT 153 Materials Structure And Properties
Presentation transcript:

Introduction to Material Science

Materials Science and Engineering The discipline of investigating the relationships that exist between the structures and properties of materials. Materials Engineering The discipline of designing or engineering the structure of a material to produce a predetermined set of properties based on established structure-property correlation. Four Major Components of Material Science and Engineering: Structure of Materials Properties of Materials Processing of Materials Performance of Materials

And Remember: Materials “Drive” our Society! Ages of “Man” we survive based on the materials we control Stone Age – naturally occurring materials Special rocks, skins, wood Bronze Age Casting and forging Iron Age High Temperature furnaces Steel Age High Strength Alloys Non-Ferrous and Polymer Age Aluminum, Titanium and Nickel (superalloys) – aerospace Silicon – Information Plastics and Composites – food preservation, housing, aerospace and higher speeds Exotic Materials Age? Nano-Material and bio-Materials – they are coming and then …

Doing Materials! Engineered Materials are a function of: Raw Materials Elemental Control Processing History Our Role in Engineering Materials then is to understand the application and specify the appropriate material to do the job as a function of: Strength: yield and ultimate Ductility, flexibility Weight/density Working Environment Cost: Lifecycle expenses, Environmental impact* * Economic and Environmental Factors often are the most important when making the final decision!

Example of Materials Engineering Work – Hip Implant With age or certain illnesses joints deteriorate. Particularly those with large loads (such as hip). Adapted from Fig. 22.25, Callister 7e.

Example – Hip Implant Requirements mechanical strength (many cycles) good lubricity biocompatibility Adapted from Fig. 22.24, Callister 7e.

Example – Hip Implant Adapted from Fig. 22.24, Callister 7e.

Solution – Hip Implant Key Problems to overcome: Acetabular Cup and Liner Key Problems to overcome: fixation agent to hold acetabular cup cup lubrication material femoral stem – fixing agent (“glue”) must avoid any debris in cup Must hold up in body chemistry Must be strong yet flexible Ball Femoral Stem

Types of Materials Major Types of Materials Other Materials METALS CERAMICS POLYMERS Other Materials COMPOSITES ELECTRONIC MATERIALS ADVANCED MATERIALS

Materials Metals Ceramics Polymers Composites Steel, Cast Iron, Aluminum, Copper, Titanium, many others Ceramics Glass, Concrete, Brick, Alumina, Zirconia, SiN, SiC Polymers Plastics, Wood, Cotton (rayon, nylon), “glue” Composites Glass Fiber-reinforced polymers, Carbon Fiber-reinforced polymers, Metal Matrix Composites, etc.

Metals Ceramics Some of these have descriptive subclasses. Classes have overlap, so some materials fit into more than one class. Metals Iron and Steel Alloys and Superalloys (e.g. aerospace applications)  Intermetallic Compounds (high-T structural materials) Ceramics Structural Ceramics (high-temperature load bearing) Refractories (corrosion-resistant, insulating) Whitewares (e.g. porcelains) Glass Electrical Ceramics (capacitors, insulators, transducers, etc.)  Chemically Bonded Ceramics (e.g. cement and concrete)

Biomaterials (really using previous 5, but bio-mimetic) Polymers  Plastics Liquid crystals Adhesives Composites Particulate composites (small particles embedded in a different material) Laminate composites (golf club shafts, tennis rackets, Damaskus swords) Fiber reinforced composites (e.g. fiberglass) Electronic Materials Silicon and Germanium III-V Compounds (e.g. GaAs) Photonic materials (solid-state lasers, LEDs) Biomaterials (really using previous 5, but bio-mimetic) Man-made proteins (cytoskeletal protein rods or “artificial bacterium”) Biosensors (Au-nanoparticles stabilized by encoded DNA for anthrax detection) Drug-delivery colloids (polymer based)

Thoughts about these “fundamental” Materials Metals: Strong, ductile high thermal & electrical conductivity opaque, reflective. Polymers/plastics: Covalent bonding  sharing of e’s Soft, ductile, low strength, low density thermal & electrical insulators Optically translucent or transparent. Ceramics: ionic bonding (refractory) – compounds of metallic & non-metallic elements (oxides, carbides, nitrides, sulfides) Brittle, glassy, elastic non-conducting (insulators) Metals have high thermal & electrical conductivity because valence electrons are free to roam

The Materials Selection Process 1. Pick Application Determine required Properties Properties: mechanical, electrical, thermal, magnetic, optical, deteriorative. 2. Properties Identify candidate Material(s) Material: structure, composition. 3. Material Identify required Processing Processing: changes structure and overall shape ex: casting, sintering, vapor deposition, doping forming, joining, annealing.

ASHBY “Strength-Density” Material Selection Diagram

Detailed diagram for Metals Detailed diagram for ceramics

ASHBY “Strength-Ductility” Material Selection Diagram

ASHBY “Strength-Cost” Material Selection Diagram

Processing can change structure! (see above structure vs Cooling Rate) Properties of Materials (ex: Strength or Hardness, etc.) Depend on Structure (d) 30 mm 6 00 Example: 1080 Steel 5 00 (c) 4 mm 4 00 (b) 30 mm (a) 30 mm Hardness (BHN) 3 00 2 00 100 0.01 0.1 1 10 100 1000 Cooling Rate (ºC/s) And: Processing can change structure! (see above structure vs Cooling Rate)

Another Example: Rolling of Steel At h1, L1 low UTS low YS high ductility round grains At h2, L2 high UTS high YS low ductility elongated grains Structure determines Properties but Processing determines Structure!

Optical Properties of Ceramic are controlled by “Grain Structure” Grain Structure is a function of “Solidification” processing!

Electrical Properties (of Copper): T (°C) -200 -100 Cu + 3.32 at%Ni Cu + 2.16 at%Ni deformed Cu + 1.12 at%Ni 1 2 3 4 5 6 Resistivity, r (10-8 Ohm-m) Cu + 1.12 at%Ni “Pure” Cu Electrical Resistivity of Copper is affected by: Contaminate level Degree of deformation Operating temperature Adapted from Fig. 18.8, Callister 7e. (Fig. 18.8 adapted from: J.O. Linde, Ann Physik 5, 219 (1932); and C.A. Wert and R.M. Thomson, Physics of Solids, 2nd edition, McGraw-Hill Company, New York, 1970.)

THERMAL Properties • Space Shuttle Tiles: • Thermal Conductivity --Silica fiber insulation offers low heat conduction. • Thermal Conductivity of Copper: --It decreases when you add zinc! Composition (wt% Zinc) Thermal Conductivity (W/m-K) 400 300 200 100 10 20 30 40 100 mm Adapted from Fig. 19.4W, Callister 6e. (Courtesy of Lockheed Aerospace Ceramics Systems, Sunnyvale, CA) (Note: "W" denotes fig. is on CD-ROM.) Adapted from Fig. 19.4, Callister 7e. (Fig. 19.4 is adapted from Metals Handbook: Properties and Selection: Nonferrous alloys and Pure Metals, Vol. 2, 9th ed., H. Baker, (Managing Editor), American Society for Metals, 1979, p. 315.)

MAGNETIC Properties • Magnetic Permeability vs. Composition: --Adding 3 atomic % Si makes Fe a better recording medium! • Magnetic Storage: --Recording medium is magnetized by recording head. Magnetic Field Magnetization Fe+3%Si Fe Adapted from C.R. Barrett, W.D. Nix, and A.S. Tetelman, The Principles of Engineering Materials, Fig. 1-7(a), p. 9, Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey. Fig. 20.23, Callister 7e. (Fig. 20.23 is from J.U. Lemke, MRS Bulletin, Vol. XV, No. 3, p. 31, 1990.)

DETERIORATIVE Properties • Heat treatment: slows crack speed in salt water! • Stress & Saltwater... --causes cracks! “held at 160ºC for 1 hr before testing” increasing load crack speed (m/s) “as-is” 10 -10 -8 Alloy 7178 tested in saturated aqueous NaCl solution at 23ºC Adapted from Fig. 11.20(b), R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials" (4th ed.), p. 505, John Wiley and Sons, 1996. (Original source: Markus O. Speidel, Brown Boveri Co.) 4 mm --material: 7150-T651 Al "alloy" (Zn,Cu,Mg,Zr) Adapted from Fig. 11.26, Callister 7e. (Fig. 11.26 provided courtesy of G.H. Narayanan and A.G. Miller, Boeing Commercial Airplane Company.) Adapted from chapter-opening photograph, Chapter 17, Callister 7e. (from Marine Corrosion, Causes, and Prevention, John Wiley and Sons, Inc., 1975.)

Courses on Materials Science will make you aware of the importance of Material Selection by: • Using the right material for the job. one that is most economical and “Greenest” when life usage is considered • Understanding the relation between properties, structure, and processing. • Recognizing new design opportunities offered by materials selection.