Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. The schematic of the setup: (a) the multiphoton laser path and (b) the laser path.

Slides:



Advertisements
Similar presentations
Date of download: 5/27/2016 Copyright © 2016 SPIE. All rights reserved. (a) UV–Vis extinction spectrum of citrate capped AgNPs. Inset shows transmission.
Advertisements

Date of download: 5/27/2016 Copyright © 2016 SPIE. All rights reserved. XY plane of rotation probe: the circles on the left indicate the 23 source positions.
Date of download: 5/27/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the light path. The galvo scanners are mounted above periscopes.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. (a) A stack of representative three-dimensional images of 80-nm AuNPs embedded.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Optical and electronics design of a laser reflectance confocal microscope (VivaScope).
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Confocal to multiphoton conversion. (a) Schematic of system adaptation. The near.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Schematic representation of the benchtop microsurgery microscope system for combined.
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Cross section of the investigated microstructured optical fiber obtained with atomic.
Date of download: 5/29/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the adaptive harmonic generation microscope. Lx, lens; Mx, mirror;
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. (a) Absorption (dashed line), fluorescence emission (solid line, excitation at.
Date of download: 5/31/2016 Copyright © 2016 SPIE. All rights reserved. Schematic overview of the acquisition system. The basic principle is to use the.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) The schematic diagram and (b) the photograph of the graphene saturable absorber.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) Optical image of fore and hind wings from a male S. charonda butterfly at different.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) Vision of the Brillouin lidar operated from a helicopter. The center ray represents.
Date of download: 6/2/2016 Copyright © 2016 SPIE. All rights reserved. Experimental setup for angular and spectrally resolved scattering microscopy. The.
Date of download: 6/2/2016 Copyright © 2016 SPIE. All rights reserved. Supramolecular order quantification. (a) Heat-induced disorder in porcine corneal.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Lens L focuses 488 or 514nm of light from an argon-ion laser at the BFP of a 1.45.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of intravital imaging system based on a custom-built video-rate laser.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Schematic setup of the DS-VHI system. Multicolor fluorescent planes within a tissue.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. (a) Confocal microscope images of human adipose-derived stem cells (hASCs) labeled.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. (a) Experimental setup to TPEF, SHG, THG, and FLIM microscopy. Real setup with different.
Date of download: 6/21/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram of thermal destruction and photothermal treatment (PTT) study.
Date of download: 6/21/2016 Copyright © 2016 SPIE. All rights reserved. Plot of resolution versus maximum sampling depth for confocal microscopy, widefield.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Index-matching effect. Matching the index of refraction of the bead with the solution.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of spectral-domain optical coherence tomography (SD-OCT) system and forward-facing.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Prismless confocal total internal reflection (CTIR) microscope. 532-nm light is.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Geometry of the simulations, as carried out in this paper. The setup is infinite.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. (a) Optical setup of the experiment. L1: the fs laser at 1554nm. L2: the laser.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. Structure of a well-characterized 2PA fluorophore and its photophysical properties:
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Schematic optical layout of the instrument. Color box legend: Upright optical tweezers.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Overview (a), images of the λ-stack (b) and spectra of ROI 1 and 2 (c) of a 24.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Depiction of the confocal Raman system used to excite the embedded probes and collect.
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of a photoporation system using a 405-nm diode laser: L (L1=50mm.
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. The schematic of the optical setup implemented for the experiment is presented.
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. Horizontal noncontact FMT imaging system. (a) The FMT setup is illustrated, where.
Developing Confocal Raman-AFM and Fluorescence-AFM Imaging Techniques to Visualize Drug-Cell Interactions with Further Implications in Cellular Pathology.
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Characterization of reversibly switchable photo-imprint microscopy (rsPIM). (a)
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Schematic showing the principle of calculating the TD between the contractile waves.
Date of download: 6/28/2016 Copyright © 2016 SPIE. All rights reserved. Absorptive transillumination imaging of intramyocardial scroll waves: (a) schematic.
Date of download: 6/28/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the luminescence acquisition setup and the geometry of the flat.
Date of download: 6/29/2016 Copyright © 2016 SPIE. All rights reserved. Diagram of linear beam-shaping optics, as well as respective blood vessel positions.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. Diagrams demonstrating shadow imaging. (a) The position of the shadow moves as the.
Date of download: 7/2/2016 Copyright © 2016 SPIE. All rights reserved. The schematic of experimental setup used for generation of collimated hollow beam.
Date of download: 7/5/2016 Copyright © 2016 SPIE. All rights reserved. Chemical structures for the LCOs qFTAA and hFTAA. Figure Legend: From: Spectral.
Date of download: 7/7/2016 Copyright © 2016 SPIE. All rights reserved. Schematics of typical fluorescence imaging system and its key parameters. A typical.
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. Schematic representations of the HP1α and C/EBPα proteins indicating the relative.
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. Through-the-objective TIRF creates the evanescent field on the aqueous side of the.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the optical-resolution photoacoustic microscope. (b) Photograph.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the experimental setup: APD, avalanche photodiode; BS, beamsplitter;
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Experimental configuration of the PAT setup coregistered with the DOT system. The.
Date of download: 7/11/2016 Copyright © 2016 SPIE. All rights reserved. Scheme of the simulation arrangement. The red hour glass shape denotes the illumination.
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. Schematic diagram of the integrated OCT/OM system. SLD: superluminescent diode.
From: Magnetic-field-assisted photothermal therapy of cancer cells using Fe-doped carbon nanoparticles J. Biomed. Opt. 2012;17(1): doi: /1.JBO
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the simultaneous time- and wavelength resolved fluorescence spectroscopy.
Date of download: 9/19/2016 Copyright © 2016 SPIE. All rights reserved. Schematics of the 3-D printed probe for tissue collagen differentiation. (a) The.
Date of download: 9/19/2016 Copyright © 2016 SPIE. All rights reserved. Excitation and emission spectra for CdS∕Cd(OH)2 QDs and functionalized CdS∕Cd(OH)2-glutaraldehyde.
Date of download: 9/19/2016 Copyright © 2016 SPIE. All rights reserved. Phase-dependent probe amplitude in the continuous wave regime. The blue line is.
From: Microtube Laser Forming for Precision Component Alignment
From: Coherent Anti-Stokes Raman Scattering (CARS) Microscopy: A Novel Technique for Imaging the Retina Invest. Ophthalmol. Vis. Sci ;54(5):
Volume 108, Issue 3, Pages (February 2015)
Volume 108, Issue 12, Pages (June 2015)
Sapun H. Parekh, Young Jong Lee, Khaled A. Aamer, Marcus T. Cicerone 
Scanning Near-Field Fluorescence Resonance Energy Transfer Microscopy
Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two- Photon Laser Scanning Microscopy  Jun B. Ding, Kevin T. Takasaki, Bernardo.
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Volume 101, Issue 10, Pages (November 2011)
Volume 105, Issue 10, Pages (November 2013)
Volume 98, Issue 1, Pages (January 2010)
Volume 105, Issue 10, Pages (November 2013)
Fluorescence microscopy with super-resolved optical sections
Presentation transcript:

Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. The schematic of the setup: (a) the multiphoton laser path and (b) the laser path (red) with the extra optical components used for enabling stimulated emission depletion (STED) microscopy in blue color. PBS: polarizing beam splitter, SMF: single-mode polarizing maintaining optical fiber, MP: multiphoton, Amp: electronic amplifier, λ/2: half wave plate, λ/4: quarter wave plate. An optional shutter could be placed before SMF that is not shown in the figure. Figure Legend: From: Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging J. Biomed. Opt. 2014;19(10): doi: /1.JBO

Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. STED microscope: (a) three-dimensional (3-D) visualization of 150-nm-gold beads imaged with STED and excitation beams to align them spatially one over the other. The 3-D visualization shows three planes: XY plane (top left) and projections of Z to X and Y-axes (XZ at bottom and YZ toward right). STED efficiency: (b) and (c) a pair of images of 40-nm crimson fluorescent spheres imaged by confocal and STED, respectively. (d) and (e) Images of a PtK2 cell imaged with confocal and STED, respectively. Abberior Star635P was used to label the microtubules inside the cell. (f) The line profiles of the dotted line in the zoom inset of the beads image. The red graph shows the STED, and three individual beads can be completely separated in STED. (g) The line profile of the dotted line shown in the microtubule image inset in (d) and (e). Figure Legend: From: Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging J. Biomed. Opt. 2014;19(10): doi: /1.JBO

Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. STED atomic force microscope (AFM): (a) STED microscope design that looks very similar to a normal microscope (b) STED AFM stage change. The blue color shows the AFM stage and the AFM. (c) A schematic of the STED AFM with details (sizes are not proportional). Figure Legend: From: Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging J. Biomed. Opt. 2014;19(10): doi: /1.JBO

Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. The low resolution monitoring for AFM movement: in a sample of crowded 40-nm crimson fluorescent beads sample, the AFM tip is moved between two adjacent beads without touching or moving any of them. This is achieved by the high resolution map that separates the beads completely. The low resolution STED imaging can still distinguish the two beads where you can see the tip moving around the beads in the marked trajectory in the map. (MPEG, 1.46 MB) [URL: Figure Legend: From: Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging J. Biomed. Opt. 2014;19(10): doi: /1.JBO

Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Manipulation performed on a fixed cell: three different movement areas are recorded in this video segment. The confocal and STED images are shown to demonstrate resolution difference. The three different movements shown uses different forces. The still images were done at the lower most part of the cell, and the AFM interaction is recorded at a different height so that movement can be visualized. (MPEG, 1.68 MB) [URL: Figure Legend: From: Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging J. Biomed. Opt. 2014;19(10): doi: /1.JBO

Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Manipulation performed on a fixed cell: (a) the sample seen in the large field of view. (b) and (c) The confocal and STED images of the selected cell. (c) Two targeted areas close to the periphery of the cell that are shown in (d, e) and (f, g). (d) and (e) A small movement carried out in order of hundreds of nanometers. (f) and (g) Manipulation performed with a higher force in order to visualize stretching of a single microtubule bundle. (h) The zoomed in view of the selected area in (g) to visualize a tubule being separated. Figure Legend: From: Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging J. Biomed. Opt. 2014;19(10): doi: /1.JBO

Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. Cutting a microtubule: The live monitoring with STED AFM allows you to do surgeries at nanoscale with a precision determined the localization of tip seen by STED AFM. In this video, a single tubule is cut by the AFM tip without interfering nearby tubules or structures with the help of STED SR imaging. (MPEG, 2.55 MB) [URL: Figure Legend: From: Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging J. Biomed. Opt. 2014;19(10): doi: /1.JBO