L wN ( ) Uncertainty Estimation Using Hyperspectral GSM Assume a GSM trio (Chl, CDM & BBP) and associate uncertainty level Drive hyperspectral GSM forward.

Slides:



Advertisements
Similar presentations
Comparisons of ocean colour merged data sets Stéphane Maritorena ICESS University of California, Santa Barbara Special thanks to Odile, Antoine and the.
Advertisements

Detecting Change in the Global Ocean Biosphere using SeaWiFS Satellite Ocean Color Observations David Siegel Earth Research Institute, UC Santa Barbara.
Ocean Optics XXI, Glasgow, Scotland, October 8-12, 2012 David Antoine; André Morel Laboratoire d’Océanographie de Villefranche (LOV), CNRS and Université.
From UV to fluorescence, a semi-analytical ocean color model for MODIS and beyond Stéphane Maritorena & Dave Siegel Earth Research Institute University.
Satellite Ocean Color Overview Dave Siegel – UC Santa Barbara With help from Chuck McClain, Mike Behrenfeld, Bryan Franz, Jim Yoder, David Antoine, Gene.
Beyond Chlorophyll: Ocean color ESDRs and new products S. Maritorena, D. A. Siegel and T. Kostadinov Institute for Computational Earth System Science University.
Optical variability and optical « anomalies » in Mediterranean waters André Morel, David Antoine and Hervé Claustre Laboratoire d’Océanographie de Villefranche.
GlobColour CDR Meeting ESRIN July 2006 Merging Algorithm Sensitivity Analysis ACRI-ST/UoP.
IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, PJW NASA/SSAI IOP Algorithm OOXIX.
ISOPLETHS OF CHLOROPHYLL IN RADIANCE SPACE Janet W. Campbell, Timothy S. Moore, and Mark D. Dowell Ocean Process Analysis Laboratory University of New.
The GSM merging model. Previous achievements and application to GlobCOLOUR Globcolour / Medspiration user consultation, Dec 4-6, 2006, Villefranche/mer.
Uncertainty estimates in input (Rrs) and output ocean color data: a brief review Stéphane Maritorena – ERI/UCSB.
Error bar estimates Estimates of the uncertainties on input LwN Estimates of the error model Estimates of the uncertainties on outputs Chla, bbp,cdm (Co-variance.
Characterizing upper ocean CDOM dynamics using integrated laboratory, satellite and global field data Characterizing upper ocean CDOM dynamics using integrated.
2 Remote sensing applications in Oceanography: How much we can see using ocean color? Adapted from lectures by: Martin A Montes Rutgers University Institute.
1 Remote sensing applications in Oceanography: How much we can see using ocean color? Martin A Montes Ph.D Rutgers University Institute of Marine and Coastal.
Satellite Retrieval of Phytoplankton Community Size Structure in the Global Ocean Colleen Mouw University of Wisconsin-Madison In collaboration with Jim.
In situ science in support of satellite ocean color objectives Jeremy Werdell NASA Goddard Space Flight Center Science Systems & Applications, Inc. 6 Jun.
Ocean Color Observations and Their Applications to Climate Studies Alex Gilerson, Soe Hlaing, Ioannis Ioannou, Sam Ahmed Optical Remote Sensing Laboratory,
Atmospheric Correction and Adjacency effect (a little) Ken Voss, Ocean Optics Class, Darling Center, Maine, Summer 2011.
Marine inherent optical properties (IOPs) from MODIS Aqua & Terra Marine inherent optical properties (IOPs) from MODIS Aqua & Terra Jeremy Werdell NASA.
1 Evaluating & generalizing ocean color inversion models that retrieve marine IOPs Ocean Optics Summer Course University of Maine July 2011.
IOP algorithm OOXX, Anchorage, September 25, 2010 Some (basic) considerations on our capability to derive b bp from AOPs (R and K d ), in situ.
Recent advances for the inversion of the particulate backscattering coefficient at different wavelengths H. Loisel, C. Jamet, and D. Dessailly.
The Ocean Color MEASURES Project S. Maritorena 1, J. Frew 2, N.B. Nelson 1, D.A. Siegel 1,3, M. Behrenfeld 4 1. Institute for Computational Earth System.
Large Ensemble Tropical Cyclone Forecasting K. Emanuel 1 and Ross N. Hoffman 2, S. Hopsch 2, D. Gombos 2, and T. Nehrkorn 2 1 Massachusetts Institute of.
Satellite Ocean Color Products: What should be produced? ZhongPing Lee, Bryan Franz, Norman Kuring, Sean Baily raise questions, rather to provide definite.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
Lachlan McKinna & Jeremy Werdell Ocean Ecology Laboratory NASA Goddard Space Flight Center MODIS Science Team Meeting Silver Spring, Maryland 21 May 2015.
Validation of turbidity products EuroGOOS Conference, May 20-22, 2008, Exeter Session Observations – OBS17 May 22, 2008 Validation of turbidity products.
Tailored Algorithms for Ocean Colour applications at regional scales: geographic and optical approaches Mark Dowell & Stewart Bernard.
Approximate Analytical Solutions to the Groundwater Flow Problem CWR 6536 Stochastic Subsurface Hydrology.
ASSESSMENT OF OPTICAL CLOSURE USING THE PLUMES AND BLOOMS IN-SITU OPTICAL DATASET, SANTA BARBARA CHANNEL, CALIFORNIA Tihomir S. Kostadinov, David A. Siegel,
Data merging benefits Globcolour / Medspiration user consultation, Nov , 2007, Oslo Session 4 –GlobColour applications – November 21, Data.
Preliminary results and uncertainties of scattering measurements for SORTIE Michael Twardowski 1, Scott Freeman, Jim Sullivan, Ron Zaneveld, Chuck Trees,
Sensing primary production from ocean color: Puzzle pieces and their status ZhongPing Lee University of Massachusetts Boston.
Scattering and attenuation and tracking uncertainties for cal/val.
Comparison of Phytoplankton Dynamics in the North Atlantic and the North Pacific.
Lecture 3 IOPs: Absorption physics and absorbing materials Collin Roesler 3 July 2007.
Radiative Coupling in the Oceans using MODIS-Aqua Ocean Radiance Data Watson Gregg, Lars Nerger Cecile Rousseaux NASA/GMAO Assimilate MODIS-Aqua Water-Leaving.
GlobColour / Medspiration user consultations, Nov 20-22, 2007, Oslo Validation of the GlobColour Full product set ( FPS ) over open ocean Case 1 waters.
IOP Algorithm Ocean Optics XIX, 7 Oct 2008, PJW NASA/SSAI IOP Algorithm OOXIX Jeremy Werdell NASA Ocean Biology Processing Group.
The role of Optical Water Type classification in the context of GIOP Timothy S. Moore University of New Hampshire, Durham NH Mark D. Dowell Joint Research.
In situ data in support of (atmospheric) ocean color satellite calibration & validation activities How are my data used? Part 2 Ocean Optics Class University.
New Fluorescence Algorithms for the MERIS Sensor Yannick Huot and Marcel Babin Laboratoire d’Océanographie de Villefranche Antoine Mangin and Odile Fanton.
Estimating the uncertainties in the products of inversion algorithms or, how do we set the error bars for our inversion results? Emmanuel Boss, U. of Maine.
Radiometry and Uncertainties from SORTIE (Spectral Ocean Radiance Transfer Investigation and Experiment) Kenneth Voss and Howard Gordon, Univ. of Miami.
A semi-analytical ocean color inherent optical property model: approach and application. Tim Smyth, Gerald Moore, Takafumi Hirata and Jim Aiken Plymouth.
An Observationally-Constrained Global Dust Aerosol Optical Depth (AOD) DAVID A. RIDLEY 1, COLETTE L. HEALD 1, JASPER F. KOK 2, CHUN ZHAO 3 1. CIVIL AND.
IOP algorithm OOXX Jeremy Werdell & Bryan Franz NASA Ocean Biology Processing Group 25 Sep 2010, Anchorage, AK
Fluorescence Line Height (FLH) and Fluorescence Quantum Yield (FQY)
Lecture 12: Models of IOPs and AOPs Collin Roesler 11 July 2007.
Constraints on transition zone discontinuities from surface wave overtone measurements Ueli Meier Jeannot Trampert Andrew Curtis.
Open Ocean CDOM Production and Flux
Some refinements for global IOPs products ZhongPing Lee IOPs Workshop, Anchorage, AK, Oct 25, 2010.
Results for Garver-Siegel-Maritorena semi- analytic model (GSM01) when applied to NOMAD dataset. Figures 1-6. The GSM01 model was “linearized” and the.
Inverse modeling Semi-analytical algorithms : sensitivity analysis of the values of the backscattering spectral dependency n and the a_nap&cdom slope S.
“Regional” adjustments of SAA parameterization Mark Dowell & Timothy Moore EC-JRCNURC & UNH.
1 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Operational Implementation Strategies Moderator: Bryan Franz Topic 3.
Forward and Inverse Modeling of Ocean Color Tihomir Kostadinov Maeva Doron Radiative Transfer Theory SMS 598(4) Darling Marine Center, University of Maine,
The Dirty Truth of Coastal Ocean Color Remote Sensing Dave Siegel & St é phane Maritorena Institute for Computational Earth System Science University of.
Assessing the optical properties and impacts of cyanobacteria blooms on ocean color remote sensing Background Cyanobacteria Harmful algal blooms (cHABs)
Coastal Water Algorithms
Probabilistic Robotics
Simulation for Case 1 Water
Wayne Slade Ocean Optics Summer 2004
IOP inversion from shallow waters
University of California, Irvine PI: S. Sorooshian
Fig. 1. Location of the study site (23-28 S, W)
Characterization and model parameterization for CcaSR
Presentation transcript:

L wN ( ) Uncertainty Estimation Using Hyperspectral GSM Assume a GSM trio (Chl, CDM & BBP) and associate uncertainty level Drive hyperspectral GSM forward to calculate ensemble of L wN ( ) values Calculate L wN ( ) & its uncertainty bounds Sample using the ACE bandset Siegel/Maritorena (UCSB)

L wN ( ) = f(Chl,CDM,BBP; ) a cdm ( ) = CDM exp(-S ( -440)) - S tuned to global LwN data set a ph ( ) = A( ) Chl B( ) - following Bricaud model but tuned to global LwN data set b bb ( ) = BBP (440/ )  -  tuned to … a w ( ) => Follows Morel’s clearest waters b bw ( ) => Buiteveld 94 (S=36; T=12C) F o ( ) => Thuillier IOPs => R rs ( ) following Gordon et al 88 1 nm resolution

a ph ( ) = A( ) Chl B( ) A( )B( ) Wavelength (nm)

Global Mean GSM Trio # realizations =100 - assumes 25% uncertainty in GSM trio

NABE Bloom GSM Trio # realizations =100 - assumes 25% uncertainty in GSM trio

Plumes & Blooms GSM Trio # realizations =100 - assumes 25% uncertaint7 in GSM trio

Sampling of the ACE Bandset

Next Steps? Reassess uncertainty goals - we stated 25% for each GSM output (?) Widen set of GSM triplets using field observations (probably NOMAD2) Propagate to TOA to determine bounds on L sat ( ) Build into full inversion model to test approach end to end