Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」

Slides:



Advertisements
Similar presentations
Structure of Resonance and Continuum States Hokkaido University Unbound Nuclei Workshop Pisa, Nov. 3-5, 2008.
Advertisements

反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
DNP, Hawaii 2014 Non-local potentials in nuclear reactions Luke Titus and Filomena Nunes Michigan State University.
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
George Papadimitriou Many-body methods for the description of bound weakly bound and unbound nuclear states Understanding nuclear.
Shell Model with residual interactions – mostly 2-particle systems Simple forces, simple physical interpretation.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Completeness of the Coulomb eigenfunctions Myles Akin Cyclotron Institute, Texas A&M University, College Station, Texas University of Georgia, Athens,
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Charge radii of 6,8 He and Halo nuclei in Gamow Shell Model G.Papadimitriou 1 N.Michel 6,7, W.Nazarewicz 1,2,4, M.Ploszajczak 5, J.Rotureau 8 1 Department.
Charge radii of 6,8 He and Halo nuclei in Gamow Shell Model G.Papadimitriou 1 N.Michel 7, W.Nazarewicz 1,2,4, M.Ploszajczak 5, J.Rotureau 8 1 Department.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Systematic study of isovector dipole mode up to A=50 KEK 研究会「原子核・ハドロン物理 : 横断研究会」 KEK, 2007 年 11 月 19 日 -21 日 稲倉恒法 中務孝 矢花一浩 ( 筑波大学 ) ( 理研 ) ( 筑波大学 )
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
RCNP.08 Breakup of halo nuclei with Coulomb-corrected eikonal method Y. Suzuki (Niigata) 1.Motivation for breakup reactions 2.Eikonal and adiabatic approximations.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
What is a resonance? K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (1)
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Yudai Ichikawa (Kyoto University/JAEA) 2013/07/26 RCNP 研究究会「核子・ハイペロン多体系におけるクラスター現 象」 1 J-PARC における d(π +, K + ) 反応を 用いた K 中間子原子核の探索.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Furong Xu (许甫荣) Many-body calculations with realistic and phenomenological nuclear forces Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Structure and reactions at the dripline with coupled-cluster theory. Gaute Hagen (ORNL) Collaborators: Thomas Papenbrock (UT/ORNL) Morten Hjorth-Jensen.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Furong Xu (许甫荣) Many-body correlations in ab-initio methods Outline I. Nuclear forces, Renormalizations (induced correlations) II. N 3 LO (LQCD) MBPT,
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
DWIA calculation of 3 He (In-flight K -, n) reaction RIKEN, Advanced Meson Science Lab. Takahisa Koike KEK 研究会「現代の原子核物理-多様化し進化する原子核の描像」、 2006 年 8 月 3 日.
Presented by Building Nuclei from the Ground Up: Nuclear Coupled-cluster Theory David J. Dean Oak Ridge National Laboratory Nuclear Coupled-cluster Collaboration:
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Pairing Correlation in neutron-rich nuclei
Complex-energy shell model description of light nuclei
This relation has been checked in numerous precision experiments.
Nuclear structure calculations with realistic nuclear forces
Resonance and continuum in atomic nuclei
Tensor optimized shell model and role of pion in finite nuclei
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Nuclear excitations in relativistic nuclear models
Few-body approach for structure of light kaonic nuclei
Di-nucleon correlations and soft dipole excitations in exotic nuclei
Kazuo MUTO Tokyo Institute of Technology
R. Lazauskas Application of the complex-scaling
Nicolas Michel (ESNT/SPhN/CEA) Kenichi Matsuyanagi (Kyoto University)
Presentation transcript:

Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」

Introduction Cluster-Orbital Shell Model Pole- and Continuum-contributions Neo-COSM approach Study of nuclei in the core and valence nucleons model space Comparison with Gamow Shell Model

1. Cluster-Orbital Shell Model(COSM) Y. Suzuki and K. Ikeda, PRC38(1998) Hamiltonian Model space core1-body2-body

Neo-COSM approach Dynamics of the total system Stochastically chosen basis sets H.M, K. Kato and K. Ikeda, PRC73(2006), Size-parameter of the core: b Radial function: Gaussian

“exact” method SVM-like approach V. I. Kukulin and V. M. Krasnopol’sky, J. Phys. G3 (1977) K. Varga and Y. Suzuki, Phys. Rev. C52(1995) H. Nemura, Y. Akaishi and Y. Suzuki, Phys. Rev. Lett. 89(2002) “Refinement” procedure 18 O ( 16 O+2n) : N=2000 Stochastic approach: N=138

16 O+XN systems Energies are almost reproduced

Dynamics of the core T. Ando, K. Ikeda, and A. Tohsaki-Suzuki, PTP64 (1980). Additional 3-body force Energy of 16 O-core

Core+nCore+p Core-N interaction

R rms are improved Inclusion of the dynamics of the core:

COSM is a CO“SM” What is the relation to GSM?

2. Comparison with GSM “Gamow Shell Model (GSM)” Single-particle states Bound states (h.o. base) Pole (bound and resonant ) + Continuum R. Id Betan, et al., PRC67(2003) N. Michel, et al., PRC67 (2003) G. Hagen, et al., PRC71 (2005) “Gamow” state

Im.k Re. k Bound states Anti-bound states (Virtual states) Resonant statesComplex momentum plane

R. Id Betan, et al., PRC67(2003) Poles, Continua, Contour path Contour path:Discretized

Progresses N. Michel, W. Nazarewicz, M. Ploszajczak, J. Okolowicz G. Hagen, M. Hjorth-Jensen, J. S. Vaagen R. Id Betan, R. J. Liotta, N. Sandulescu, T. Vertse He-, O-isotopes (Core+Xn), Li-isotopes (Core+Xn+p) Effective interaction, Lee-Suzuki transformation Many-body resonance, Virtual states

Preparation for a comparison 1. Completeness relation 2. Expansion of the wave function Solved by CSM Single-particleCOSM

18 O and 6 He 18 O: well-bound system 6 He: weakly bound system (a halo nucleus) Core-N: Folding+exchange+OCM N-N: Volkov No.2 (m=0.58, h=b=0.07) Angular momentum: L=5 Core-N: “KKNN[1]”+OCM N-N: Minnesota (u=1.00) Angular momentum: L=5 [1] H. Kanada, et al., PTP61 (1979), 1327.

18 O Even though the NN-int. and model space are different, pole and continuum contributions are the same [21] N. Michel et al., PRC67 (2003) [26] G. Hagen et al., PRC71 (2005) “SN” : N-particles in continuum

6 He “COSM” S. Aoyama et al. PTP93 (1995) V-base “ECM” T-base Correlation of n-n T-base is important

Poles and Continua of 6 He 0p 1/2 : 0p 3/2 : Almost the same Different [21] N. Michel et al., PRC67 (2003) [26] G. Hagen et al., PRC71 (2005) “SM” approaches:Truncated

S. Aoyama et al. PTP93 (1995)N. Michel et al., PRC67 (2003) GSM: Surface DeltaCOSM: Minnesota (finite) Convergence

If we restrict the model space as L=1 Poles and continua: Details are changed [26] G. Hagen et al., PRC71 (2005)

Even though angular momenta In the basis set increase Contributions of the sum of p 3/2 and p 1/2 do not change

Details of poles and continua p 3/2 p 1/2 Almost the same Changes drastically!!

Summary COSM Comparison to GSM Useful method to study stable and unstable nuclei within the same footing Truncation of the model space Stable nuclei: Weakly bound nuclei: Same as GSM Different from GSM Even though the model space is truncated, Correlations of poles and continua are included at a maximum