2007 Paul VanRaden 1, Curt Van Tassell 2, George Wiggans 1, Tad Sonstegard 2, Bob Schnabel 3, Jerry Taylor 3, and Flavio Schenkel 4, Paul VanRaden 1, Curt.

Slides:



Advertisements
Similar presentations
2007 Paul VanRaden, Mel Tooker, and Nicolas Gengler Animal Improvement Programs Lab, Beltsville, MD, USA, and Gembloux Agricultural U., Belgium
Advertisements

Perspectives from Human Studies and Low Density Chip Jeffrey R. O’Connell University of Maryland School of Medicine October 28, 2008.
Genomic imputation and evaluation using 1074 high density Holstein genotypes P. M. VanRaden 1, D. J. Null 1 *, G.R. Wiggans 1, T.S. Sonstegard 2, E.E.
George R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD 2008 Genetic trends.
George R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Select Sires’
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD 2009 G.R. WiggansCroatian.
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
G.R. Wiggans 1, T.S. Sonstegard 1, P.M. VanRaden 1, L.K. Matukumalli 1,2, R.D. Schnabel 3, J.F. Taylor 3, J.P. Chesnais 4, F.S. Schenkel 5, and C.P. Van.
Wiggans, 2013RL meeting, Aug. 15 (1) Dr. George R. Wiggans, Acting Research Leader Bldg. 005, Room 306, BARC-West (main office);
2007 Paul VanRaden 1, Curt Van Tassell 2, George Wiggans 1, Tad Sonstegard 2, Jeff O’Connell 1, Bob Schnabel 3, Jerry Taylor 3, and Flavio Schenkel 4,
2007 Paul VanRaden 1, George Wiggans 1, Curt Van Tassell 2, Tad Sonstegard 2, Jeff O’Connell 1, Bob Schnabel 3, Jerry Taylor 3, and Flavio Schenkel 4,
Changes in the use of young bulls K. M. Olson* 1, J. L. Hutchison 2, P. M. VanRaden 2, and H. D. Norman 2 1 National Association of Animal Breeders, Columbia,
Impacts of inclusion of foreign data in genomic evaluation of dairy cattle K. M. Olson 1, P. M. VanRaden 2, D. J. Null 2, and M. E. Tooker 2 1 National.
2007 J. B. Cole 1,*, P. M. VanRaden 1, J. R. O'Connell 3, C. P. Van Tassell 1,2, T. S. Sonstegard 2, R. D. Schnabel 4, J. F. Taylor 4, and G. R. Wiggans.
2007 Paul VanRaden Animal Improvement Programs Lab, Beltsville, MD 2011 Avoiding bias from genomic pre- selection in converting.
George R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD National Association.
2007 Paul VanRaden, Curt Van Tassell, George Wiggans, Tad Sonstegard, and Jeff O’Connell Animal Improvement Programs Laboratory and Bovine Functional Genomics.
2006 Paul VanRaden Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA Fertility Trait.
2003 G.R. Wiggans,* P.M. VanRaden, and J.L. Edwards Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
2007 Paul VanRaden and Mel Tooker Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
2007 Paul VanRaden, Mel Tooker, Jan Wright, Chuanyu Sun, and Jana Hutchison Animal Improvement Programs Lab, Beltsville, MD National Association of Animal.
2007 Paul VanRaden Animal Improvement Programs Lab, USDA, Beltsville, MD, USA 2009 Mixing Different SNP Densities Mixing Different.
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
Cooper, 2014CDCB Meeting Aug. 5(1) T.A. Cooper, G.R. Wiggans and P.M. VanRaden Animal Genomics and Improvement Laboratory, Agricultural Research Service,
Paul VanRaden Animal Improvement Programs Laboratory Beltsville, MD, USA 2004 Genetic Base and Trait Definition Update.
John B. Cole, Ph.D. Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD, USA The U.S. genetic.
2006 Paul VanRaden, John Cole, and George Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
2005 Paul VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD An Example from Dairy.
Adjustment of selection index coefficients and polygenic variance to improve regressions and reliability of genomic evaluations P. M. VanRaden, J. R. Wright*,
2007 Paul VanRaden, George Wiggans, Animal Improvement Programs Laboratory Curt Van Tassell, Tad Sonstegard, Bovine Functional Genomics Laboratory USDA.
2007 Paul VanRaden and Jan Wright Animal Improvement Programs Lab, Beltsville, MD 2013 Measuring genomic pre-selection in theory.
2007 Paul VanRaden Animal Improvement Programs Lab, USDA, Beltsville, MD, USA Pete Sullivan Canadian Dairy Network, Guelph, ON, Canada
Paul VanRaden, 1 Katie Olson, 2 Dan Null, 1 Mehdi Sargolzaei, 3 Marco Winters, 4 and Jan-Thijs van Kaam 5 1 Animal Improvement Programs Laboratory, ARS,
2007 Melvin Tooker Animal Improvement Programs Laboratory USDA Agricultural Research Service, Beltsville, MD, USA
G.R. Wiggans 1, T.S. Sonstegard 1, P.M. VanRaden 1, L.K. Matukumalli 1,2, R.D. Schnabel 3, J.F. Taylor 3, F.S. Schenkel 4, and C.P. Van Tassell 1 1 Agricultural.
WiggansCDCB industry meeting – Sept. 29, 2015 (1) George R. Wiggans Animal Genomics and Improvement Laboratory Agricultural Research Service, USDA Beltsville,
G.R. Wiggans* and P.M. VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD
2007 Paul VanRaden, Melvin Tooker*, George Wiggans Animal Improvement Programs Laboratory 2009 Can you believe those genomic.
2003 P.M. VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Genetic Evaluations.
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD 2008 AIPL Centennial.
7 th World Congr. Genet. Appl. Livest. Prod Selection of dairy cattle for lifetime profit Paul M. VanRaden Animal Improvement Programs Laboratory.
2007 Paul VanRaden Animal Improvement Programs Laboratory USDA Agricultural Research Service, Beltsville, MD, USA
Paul VanRaden and John Cole Animal Improvement Programs Laboratory Beltsville, MD, USA 2004 Planned Changes to Models and Trait Definitions.
Adjustment of breeding values for past and future inbreeding Paul VanRaden*, Lori Smith Animal Improvement Programs Laboratory Agricultural Research Service,
George R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Select Sires’
2007 Paul VanRaden and Melvin Tooker* Animal Improvement Programs Laboratory 2010 Gains in reliability from combining subsets.
2007 Paul VanRaden 1, Jeff O’Connell 2, George Wiggans 1, Kent Weigel 3 1 Animal Improvement Programs Lab, USDA, Beltsville, MD, USA 2 University of Maryland.
2007 Paul VanRaden 1, Jeff O’Connell 2, George Wiggans 1, Kent Weigel 3 1 Animal Improvement Programs Lab, USDA, Beltsville, MD, USA 2 University of Maryland.
Paul VanRaden Animal Improvement Programs Laboratory Beltsville, MD, USA 2004 NAAB Update : Base Change, Udder Health, Longevity,
2007 Paul VanRaden Animal Improvement Programs Lab, Beltsville, MD Iterative combination of national phenotype, genotype, pedigree,
Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD NDHIA Board – 2009 (1)
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
G.R. Wiggans* 1, P.M. VanRaden 1, L.R. Bacheller 1, F.A. Ross, Jr. 1, M.E. Tooker 1, J.L. Hutchison 1, T.S. Sonstegard 2, and C.P. Van Tassell 1,2 1 Animal.
2003 P.M. VanRaden* and M.E. Tooker Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Definition.
2006 Paul VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Predicting Genetic.
2007 John Cole, Paul VanRaden, George Wiggans, and Melvin Kuhn Animal Improvement Programs Laboratory USDA Agricultural Research Service, Beltsville, MD,
2006 Paul VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD AIPL Contributions.
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
2007 Paul VanRaden Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA 2008 New.
Paul VanRaden Animal Improvement Programs Laboratory Beltsville, MD, USA Inbreeding Adjustments and Effect on Genetic Trend.
2007 Paul VanRaden Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA 2007 Genetic evaluation.
John B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD Biological Insights.
G.R. Wiggans, T. A. Cooper* and P.M. VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD
Visualization of Results from Genomic Predictions
Distribution and Location of Genetic Effects for Dairy Traits
Validation of genomic predictions and genomic reliability
Can you believe those genomic evaluations for young bulls?
Perspectives from Human Studies and Low Density Chip
Increased reliability of genetic evaluations for dairy cattle in the United States from use of genomic information Abstr.
Presentation transcript:

2007 Paul VanRaden 1, Curt Van Tassell 2, George Wiggans 1, Tad Sonstegard 2, Bob Schnabel 3, Jerry Taylor 3, and Flavio Schenkel 4, Paul VanRaden 1, Curt Van Tassell 2, George Wiggans 1, Tad Sonstegard 2, Bob Schnabel 3, Jerry Taylor 3, and Flavio Schenkel 4, USDA 1 Animal Improvement Programs and 2 Bovine Functional Genomics Labs, Beltsville, MD, USA, 3 U. Missouri, Columbia, and 4 U. Guelph, ON, Canada 2008 Genomic Data and Cooperation Result in Faster Progress

Interbull / ICAR, June 2008 (2) Paul VanRaden 2008 Experimental Design  Predict April 2008 daughter deviations from August 2003 PTAs Similar to Interbull trend test older Holstein bulls 1759 younger bulls (total = 5335)  Genomic predictions computed for 27 traits: 5 yield, 5 health, 16 conformation, and Net Merit

Interbull / ICAR, June 2008 (3) Paul VanRaden 2008 Genotyped Animals (n=6005) As of April 2008

Interbull / ICAR, June 2008 (4) Paul VanRaden 2008 Genomic Data and Methods  38,416 markers for each bull  Direct genomic evaluation Inversion for linear prediction, REL Iteration for nonlinear prediction  Combined genomic evaluation 3 x 3 selection index combining direct genomic PTA, traditional PA or PTA, and subset PA or PTA by REL

Interbull / ICAR, June 2008 (5) Paul VanRaden 2008 R-square values and Reliabilities comparing traditional to genomic predictions Squared corr (x100) Reliability TraditionalGenomic Trait PAGenomicPARealizedGain Net Merit Milk Fat Protein Fat % Protein %

Interbull / ICAR, June 2008 (6) Paul VanRaden 2008 R-square values and Reliabilities comparing traditional to genomic predictions Squared corr (x100) Reliability TraditionalGenomic Trait PAGenomicPARealizedGain Longevity SCS Fertility S.calf ease D.calf ease Final score

Interbull / ICAR, June 2008 (7) Paul VanRaden 2008 Value of Genotyping More SNP 9,604 (10K), 19,208 (20K), and 38,416 (40K) SNP R 2 of PA Genomic R 2 Trait10K20K40K Net Merit $ Milk yield Fat yield Protein yield Longevity SCS Fertility

Interbull / ICAR, June 2008 (8) Paul VanRaden 2008 Value of Genotyping More Bulls BullsR 2 for Net Merit PredictorPredicteePAGenomicGain

Interbull / ICAR, June 2008 (9) Paul VanRaden 2008 Expected vs Observed Reliability  Reliability for predictee bulls Traditional PA: 27% average across traits Genomic: 63% expected vs. 50% observed Observed range 78% (fat pct) to 31% (SCE) PTA regressions.8 to.9 of expected  REL and PTA adjustments Multiply genomic daughter equivalents by.7 to make expected closer to observed For example, 16 *.7 = 11 Include polygenic effect, less than 5%

Interbull / ICAR, June 2008 (10) Paul VanRaden 2008 Simulated Results World Bull Population  15,197 older and 5,987 younger bulls from all countries in Interbull file  40,000 SNP and 10,000 QTL (heavy tail)  Provided timing, memory test  Reliability vs parent average REL REL = corr 2 (EBV, true BV) 80% vs 34% expected for young bulls 72% vs 30% observed in simulation

Interbull / ICAR, June 2008 (11) Paul VanRaden 2008 Genetic Progress  Assume 60% REL for net merit Sires mostly 2 instead of 6 years old Dams of sons mostly heifers with 60% REL instead of cows with phenotype and genotype (66% REL)  Progress could increase by >50% 0.37 vs genetic SD per year Reduce generation interval more than accuracy

Interbull / ICAR, June 2008 (12) Paul VanRaden 2008 Conclusions  Genomic predictions significantly better than parent average (P <.0001) for all 27 traits tested  Gains in reliability equivalent on average to 11 daughters with records Analysis used 3576 historical bulls April data included 5285 proven bulls  R 2 increases with more bulls and SNPs

Interbull / ICAR, June 2008 (13) Paul VanRaden 2008 Acknowledgments  Funding: National Research Initiative grants CDDR Contributors (NAAB, Semex)  Genotyping and DNA extraction: BFGL, U. Missouri, U. Alberta, GeneSeek, GIFV, and Illumina  Computing from AIPL staff