Physics 101: Lecture 18, Pg 1 Physics 101: Lecture 18 Elasticity and Oscillations Exam III.

Slides:



Advertisements
Similar presentations
Kinematics of simple harmonic motion (SHM)
Advertisements

Horizontal Spring-Block Oscillators
Physics 101: Lecture 22 Simple Harmonic Motion
SHM -1.
Adapted from Holt book on physics
Physics 101: Lecture 21, Pg 1 Lecture 21: Ideal Spring and Simple Harmonic Motion l New Material: Textbook Chapters 10.1, 10.2 and 10.3.
Physics 151: Lecture 31, Pg 1 Physics 151: Lecture 31 Today’s Agenda l Today’s Topics çSimple Harmonic Motion – masses on springs (Ch ) çEnergy.
PHY PHYSICS 231 Lecture 33: Oscillations Remco Zegers Question hours: Thursday 12:00-13:00 & 17:15-18:15 Helproom.
UB, Phy101: Chapter 10, Pg 1 Physics 101: Lecture 17 Simple Harmonic Motion l Today’s lecture will cover Textbook Sections
Simple Harmonic Motion
Simple Harmonic Motion
Problmes-1.
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Physics 101: Lecture 20, Pg 1 Lecture 20: Ideal Spring and Simple Harmonic Motion l New Material: Textbook Chapters 10.1 and 10.2.
Simple Harmonic Motion
Oscillations Phys101 Lectures 28, 29 Key points:
Simple Harmonic Motion
Physics 6B Oscillations Prepared by Vince Zaccone
Physics 101: Lecture 20, Pg 1 Physics 101: Lecture 20 Elasticity and Oscillations l Today’s lecture will cover Textbook Chapter Exam III.
CHAPTER 10 Elasticity and Oscillations
Describing Periodic Motion AP Physics. Hooke’s Law.
Physics 101: Lecture 19, Pg 1 Physics 101: Lecture 19 Elasticity and Oscillations Exam III.
Simple Harmonic Motion
SIMPLE HARMOIC MOTION CCHS Physics.
Chapter 11 - Simple Harmonic Motion
Periodic Motion. Definition of Terms Periodic Motion: Motion that repeats itself in a regular pattern. Periodic Motion: Motion that repeats itself in.
Simple Harmonic Motion. l Vibrations è Vocal cords when singing/speaking è String/rubber band l Simple Harmonic Motion è Restoring force proportional.
Oscillations and Waves An oscillation is a repetitive motion back and forth around a central point which is usually an equilibrium position. A special.
Simple Harmonic Motion
تابع المحاضرة الثالثة Circular Motion There are two types of circular motion:- 1- Uniform circular motion 2- Non uniform circular motion 1- Uniform circular.
Oscillatory Motion Serway & Jewett (Chapter 15).
Physics 101: Lecture 19, Pg 1 Physics 101: Lecture 19 Elasticity and Oscillations Exam III.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 11 Simple Harmonic Motion.
Copyright © 2009 Pearson Education, Inc. Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Simple Pendulum Lecture.
Lab 9: Simple Harmonic Motion, Mass-Spring Only 3 more to go!! The force due to a spring is, F = -kx, where k is the spring constant and x is the displacement.
Physics 101: Lecture 20, Pg 1 Physics 101: Lecture 20 Elasticity and Oscillations Today’s lecture will cover Textbook Chapter Exam III Tuned.
Periodic Motion What is periodic motion?
Simple Harmonic Motion This type of motion is the most pervasive motion in the universe. All atoms oscillate under harmonic motion. We can model this motion.
Simple Harmonic Motion
Physics 101: Lecture 20, Pg 1 Physics 101: Lecture 20 Elasticity and Oscillations Today’s lecture will cover Textbook Chapter Exam III Hour.
Chapter 11: Harmonic Motion
Physics 1501: Lecture 25, Pg 1 Physics 1501: Lecture 25 Today’s Agenda l Homework #9 (due Friday Nov. 4) l Midterm 2: Nov. 16 l Topics çReview of static.
Phys 250 Ch14 p1 Chapter 13: Periodic Motion What we already know: Elastic Potential Energy energy stored in a stretched/compressed spring Force: Hooke’s.
Vibrations and Waves Chapter 11. Most object oscillate (vibrate) because solids are elastic and they will vibrate when given an impulse Tuning forks,
Physics 1D03 - Lecture 331 Harmonic Motion ( II ) (Serway 15.2, 15.3) Mass and Spring Energy in SHM.
Physics 101: Lecture 18, Pg 1 Physics 101: Lecture 18 Elasticity and Oscillations Exam III.
Simple Harmonic Motion
Physics 101: Lecture 17, Pg 1 Physics 101: Lecture 17 Fluids II Exam III.
Lecture 18: Elasticity and Oscillations I l Simple Harmonic Motion: Definition l Springs: Forces l Springs: Energy l Simple Harmonic Motion: Equations.
Simple Harmonic Motion Periodic Motion Simple periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each.
PHY 101: Lecture Ideal Spring and Simple Harmonic Motion 10.2 Simple Harmonic Motion and the Reference Circle 10.3 Energy and Simple Harmonic Motion.
Physics 101: Lecture 19, Pg 1 Physics 101: Lecture 19 Elasticity and Oscillations II Exam III.
Simple Harmonic Motion (SHM). Simple Harmonic Motion – Vibration about an equilibrium position in which a restoring force is proportional to displacement.
S H M a n d W a v e s B a s i c s. T h e O s c i l l a t o r When displaced from its vertical equilibrium position, this plastic ruler oscillates back.
Simple Harmonic Motion Wenny Maulina Simple harmonic motion  Simple harmonic motion (SHM) Solution: What is SHM? A simple harmonic motion is the motion.
Chapter 10 Waves and Vibrations Simple Harmonic Motion SHM.
Physics 101: Lecture 20, Pg 1 Physics 101: Lecture 20 Elasticity and Oscillations l Today’s lecture will cover Textbook Chapter
Physics 101: Lecture 17, Pg 1 Physics 101: Lecture 17 Fluids II Exam correction today during lab time in 242 Loomis Exam III.
Simple Harmonic Motion
Simple Harmonic Motion
Physics 101: Lecture 19 Elasticity and Oscillations II
Harmonic Motion (III) Physics 1D03 - Lecture 33.
PHYS 1441 – Section 004 Lecture #22
Oscillations © 2014 Pearson Education, Inc..
Simple Harmonic Motion
Physics 101: Lecture 19 Elasticity and Oscillations
A quick heads up on You will be able to derive it soon… Enquiry:
Aim: How do we explain the motion of a particle attached to a spring?
Reminder: Course Evaluation
Physics 101: Lecture 19 Elasticity and Oscillations
Presentation transcript:

Physics 101: Lecture 18, Pg 1 Physics 101: Lecture 18 Elasticity and Oscillations Exam III

Physics 101: Lecture 18, Pg 2 Example: hose A garden hose w/ inner diameter 2 cm, carries water at 2.0 m/s. To spray your friend, you place your thumb over the nozzle giving an effective opening diameter of 0.5 cm. What is the speed of the water exiting the hose? What is the pressure difference between inside the hose and outside? Bernoulli Equation Continuity Equation

Physics 101: Lecture 18, Pg 3 Example: Lift a House Calculate the net lift on a 15 m x 15 m house when a 30 m/s wind (1.29 kg/m 3 ) blows over the top. 48

Physics 101: Lecture 18, Pg 4 Overview l Springs (review) è Restoring force proportional to displacement è F = -k x è U = ½ k x 2 l Today è Young’s Modulus è Simple Harmonic Motion è Springs Revisited 05

Physics 101: Lecture 18, Pg 5 Simple Harmonic Motion l Vibrations è Vocal cords when singing/speaking è String/rubber band l Simple Harmonic Motion è Restoring force proportional to displacement è Springs F = -kx 11

Physics 101: Lecture 18, Pg 6 Question A mass on a spring oscillates back & forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the magnitude of the acceleration of the block biggest? 1. When x = +A or -A (i.e. maximum displacement) 2. When x = 0 (i.e. zero displacement) 3. The acceleration of the mass is constant +A t -A x 17

Physics 101: Lecture 18, Pg 7 Potential Energy in Spring l Force of spring is Conservative è F = -k x è W = -1/2 k x 2 è Work done only depends on initial and final position è Define Potential Energy PE spring = ½ k x 2 Force x work 20

Physics 101: Lecture 18, Pg 8 ***Energy in SHM*** l A mass is attached to a spring and set to motion. The maximum displacement is x=A è Energy = PE + KE = constant! = ½ k x 2 + ½ m v 2 è At maximum displacement x=A, v = 0 Energy = ½ k A è At zero displacement x = 0 Energy = 0 + ½ mv m 2 Since Total Energy is same ½ k A 2 = ½ m v m 2 v m = sqrt(k/m) A m x x=0 0 x PE S 25

Physics 101: Lecture 18, Pg 9 Question A mass on a spring oscillates back & forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the speed of the block biggest? 1. When x = +A or -A (i.e. maximum displacement) 2. When x = 0 (i.e. zero displacement) 3. The speed of the mass is constant +A t -A x 29

Physics 101: Lecture 18, Pg 10Question l A spring oscillates back and forth on a frictionless horizontal surface. A camera takes pictures of the position every 1/10 th of a second. Which plot best shows the positions of the mass. EndPoint Equilibrium EndPoint Equilibrium EndPoint Equilibrium

Physics 101: Lecture 18, Pg 11 X=0 X=A X=-A X=A; v=0; a=-a max X=0; v=-v max ; a=0X=-A; v=0; a=a max X=0; v=v max ; a=0 X=A; v=0; a=-a max Springs and Simple Harmonic Motion 32

Physics 101: Lecture 18, Pg 12 What does moving in a circle have to do with moving back & forth in a straight line ?? y x -R R 0  R  x x = R cos  = R cos (  t ) since  =  t 34

Physics 101: Lecture 18, Pg 13 SHM and Circles

Physics 101: Lecture 18, Pg 14 Simple Harmonic Motion: x(t) = [A]cos(  t) v(t) = -[A  ]sin(  t) a(t) = -[A  2 ]cos(  t) x(t) = [A]sin(  t) v(t) = [A  ]cos(  t) a(t) = -[A  2 ]sin(  t) x max = A v max = A  a max = A  2 Period = T (seconds per cycle) Frequency = f = 1/T (cycles per second) Angular frequency =  = 2  f = 2  /T For spring:  2 = k/m OR 36

Physics 101: Lecture 18, Pg 15Example A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates. Which equation describes the position as a function of time x(t) = A) 5 sin(  t)B) 5 cos(  t)C) 24 sin(  t) D) 24 cos(  t)E) -24 cos(  t) 39

Physics 101: Lecture 18, Pg 16Example A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates. What is the total energy of the block spring system? 43

Physics 101: Lecture 18, Pg 17Example A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates. What is the maximum speed of the block? 46

Physics 101: Lecture 18, Pg 18Example A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates. How long does it take for the block to return to x=+5cm? 49

Physics 101: Lecture 18, Pg 19Summary l Springs è F = -kx è U = ½ k x 2   = sqrt(k/m) l Simple Harmonic Motion è Occurs when have linear restoring force F= -kx  x(t) = [A] cos(  t) or [A] sin(  t)  v(t) = -[A  ] sin(  t) or [A  ] cos(  t)  a(t) = -[A   ] cos(  t) or -[A   ] sin(  t) 50