PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni  non.

Slides:



Advertisements
Similar presentations
How will SWOT observations inform hydrology models?
Advertisements

A thermodynamic model for estimating sea and lake ice thickness with optical satellite data Student presentation for GGS656 Sanmei Li April 17, 2012.
Satellite Capabilities for Water Resource/Quality Mapping 27 May 2013 Mark Kapfer C-Core 1.
David Prado Oct Antarctic Sea Ice: John N. Rayner and David A. Howarth 1979.
Effects of Fluvial Morphology on Remote Sensing Measurements of Discharge American Geophysical Union, Fall Meeting, 2010 Session on “H66, The Remote Sensing.
Multi-Satellite Remote Sensing of Global Inundated Surfaces over a Decade PAPA Fabrice(1), PRIGENT Catherine(2), AIRES Filipe(3), ROSSOW William(1) (1)
Professor Paul Bates SWOT and hydrodynamic modelling.
Use of satellite altimeter data for validating large scale hydraulic models Matt Wilson, University of Exeter Doug Alsdorf, Ohio State University Paul.
Kostas Andreadis1, Dennis Lettenmaier1, and Doug Alsdorf2
Paul Bates SWOT and hydrodynamic modelling. 2 Flooding as a global problem According to UNESCO in 2004 floods caused ….. –~7k deaths –affected ~116M people.
Global Monitoring of Large Reservoir Storage from Satellite Remote Sensing Huilin Gao 1, Dennis P. Lettenmaier 1, Charon Birkett 2 1 Dept. of Civil and.
CSIRO LAND and WATER Estimation of Spatial Actual Evapotranspiration to Close Water Balance in Irrigation Systems 1- Key Research Issues 2- Evapotranspiration.
Infusing satellite Data into Environmental Applications (IDEA): PM2.5 forecasting tool hosted at NOAA NESDIS using NASA MODIS (Moderate Resolution Imaging.
Dust Detection in MODIS Image Spectral Thresholds based on Zhao et al., 2010 Pawan Gupta NASA Goddard Space Flight Center GEST/University of Maryland Baltimore.
Using Remote Sensing to Estimate Water Resources from Glacial Melt Prof. Kenneth L. Verosub Dept of Geology University of California, Davis,
The University of Mississippi Geoinformatics Center NASA RPC – March, Evaluation for the Integration of a Virtual Evapotranspiration Sensor Based.
The University of Mississippi Geoinformatics Center NASA MRC RPC Review Meeting: April 2008 Integration of NASA Global Precipitation Measurement.
Multi-mission synergistic activities: A new era of integrated missions Christa Peters- Lidard Deputy Director, Hydrospheric and Biospheric Sciences, Goddard.
Prospects for river discharge and depth estimation through assimilation of swath–altimetry into a raster-based hydraulics model Kostas Andreadis 1, Elizabeth.
Assessment of Regional Vegetation Productivity: Using NDVI Temporal Profile Metrics Background NOAA satellite AVHRR data archive NDVI temporal profile.
Recent advances in remote sensing in hydrology
Earth Observation Science Recent and potential scientific achievements of the (A)ATSR Series - and some possibilities for synergy with MERIS David Llewellyn-Jones.
Retrieving High Precision River Stage and Slope from Space E. Rodriguez, D. Moller Jet Propulsion Laboratory California Institute of Technology.
- Microwave Remote Sensing Group IGARSS 2011, July 23-29, Vancouver, Canada 1 M. Brogioni 1, S. Pettinato 1, E. Santi 1, S. Paloscia 1, P. Pampaloni 1,
27 Jul 2011IGARSS session WE2.T10 1 Benefits of satellite altimetry for transboundary basins S. Biancamaria 1,2, F. Hossain 3, D. P. Lettenmaier.
The discharge prediction at a river site is fundamental for water resources management and flood risk prevention. Over the last decade, the possibility.
Improvement of Short-term Severe Weather Forecasting Using high-resolution MODIS Satellite Data Study of MODIS Retrieved Total Precipitable Water (TPW)
Small hydro sites hydrology: Optimum capacity screening and estimation of fish habitat requirements. Charles D. D. Howard Senior Advisor Charles Howard.
Estimating continental hydrology parameters from existing space missions: the need for a dedicated surface water mission N. M. Mognard(1), A. Cazenave(1),
1 of 26 Characterization of Atmospheric Aerosols using Integrated Multi-Sensor Earth Observations Presented by Ratish Menon (Roll Number ) PhD.
1-1 SWOT IGARSS July 27, 2011 INTERFEROMETRIC PROCESSING OF FRESH WATER BODIES FOR SWOT Ernesto Rodríguez, JPL/CalTech Delwyn Moller, Remote Sensing Solution.
Potential applications for highly resolved shorelines: a cross- validation approach with radar altimetry Ron Abileah (1), Jesus Gomez-Enri (2), Andrea.
Remote sensing for surface water hydrology RS applications for assessment of hydrometeorological states and fluxes –Soil moisture, snow cover, snow water.
2006/05/15 Thanh NGO-DUC Page 1 Lab meeting Contents MM5-MSE (MM5 - Mainland South East Asia) 72-hour forecast –MM5 –Couple to TRIP GSWP2 storage GRACE.
How will storage change and discharge be estimated from SWOT? Michael Durand, Doug Alsdorf, Ernesto Rodríguez, Kostas Andreadis, Elizabeth Clark, Dennis.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March Arctic Aircraft Altimeter (AAA) Experiment Envisat and ICESat underflights.
Upstream Satellite-derived Flow Signals for River Discharge Prediction
1 Validation for CRR (PGE05) NWC SAF PAR Workshop October 2005 Madrid, Spain A. Rodríguez.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Measurement of a Temporal Sequence Of DInSAR Phase Changes Due to Soil Moisture Variations Keith Morrison 1, John Bennett 2, Matt Nolan 3, and Raghav Menon.
Surface Water Virtual Mission Dennis P. Lettenmaier, Kostas Andreadis, and Doug Alsdorf Department of Civil and Environmental Engineering University of.
Prospects for river discharge estimation through assimilation of remotely sensed altimetry: The WatER satellite mission Kostas Andreadis UW Land Surface.
ESTIMATION OF RIVER DISCHARGE WITH MODIS IMAGES The University of Tokyo, Institute of Industrial Science (IIS) Kohei Hashimoto and Kazuo Oki.
Data Processing Flow Chart Start NDVI, EVI2 are calculated and Rank SDS are incorporated Integrity Data Check: Is the data correct? Data: Download a) AVHRR.
Water HM meeting E. Obligis (CLS) and L. Eymard (LOCEAN) The wet tropospheric correction issue for the WATER HM mission.
Data acquisition From satellites with the MODIS instrument.
Potential for estimation of river discharge through assimilation of wide swath satellite altimetry into a river hydrodynamics model Kostas Andreadis 1,
DEVELOPMENT OF A CELL BASED MODEL FOR STREAM FLOW PREDICTION IN UNGAUGED BASINS USING GIS DATA P B Hunukumbura & S B Weerakoon Department of Civil Engineering,
AIRS Land Surface Temperature and Emissivity Validation Bob Knuteson Hank Revercomb, Dave Tobin, Ken Vinson, Chia Lee University of Wisconsin-Madison Space.
SCM x330 Ocean Discovery through Technology Area F GE.
EGU 2013, Vienna, April 2013 A. Tarpanelli, L. Brocca, S. Barbetta, T. Moramarco National Research Council, Research Institute for Geo-Hydrological.
Assessment on Phytoplankton Quantity in Coastal Area by Using Remote Sensing Data RI Songgun Marine Environment Monitoring and Forecasting Division State.
 It is not representative of the whole water flow  High costs of installation and maintenance  It is not uniformly distributed in the world  Inaccessibility.
Corato G. 2, Moramarco T. 2, Tucciarelli T. 1 1 Department of Hydraulic Engineering and Environmental Applications, University of Palermo, Italy, Viale.
Remote Sensing of the Hydrosphere. The Hydrologic Cycle 70% of Earth is covered by oceans and surface freshwater Residence time varies from seconds to.
Over 30% of Earth’s land surface has seasonal snow. On average, 60% of Northern Hemisphere has snow cover in midwinter. About 10% of Earth’s land surface.
Trends in floods in small catchments – instantaneous vs. daily peaks
1. Титульный..
Kostas Andreadis and Dennis Lettenmaier
1Civil and Environmental Engineering, University of Washington
Update 2.2: Uncertainty in Projected Flow Simulations
Assimilation of Remotely-Sensed Surface Water Observations into a Raster-based Hydraulics Model Elizabeth Clark1, Paul Bates2, Matthew Wilson3, Delwyn.
NASA alert as Russian and US satellites crash in space
Surface Water Virtual Mission
jOmegak, San Carlos CA, USA,
Evaluation of the TRMM Multi-satellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata Basin Dennis P. Lettenmaier and.
Rice monitoring in Taiwan
Igor Appel TAG LLC, Washington, USA
Presentation transcript:

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni  non sono rappresentative dell’intero flusso d’acqua  i costi di installazione e manutenzione  non sono distribuite uniformemente nel mondo  i dati non disponibili a causa di restrizioni istituzionali  problemi di condivisione dei dati tra paesi confinanti

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni Over the last decade, the possibility to obtain river discharge estimates from satellite sensors data has come to be of considerable interest. Recent advances in radar altimetry technology have improved the accuracy in the monitoring of the water surface level of large rivers and lakes located in ungauged or poorly gauged inland regions. Radar altimetry technology has been applied to large rivers, such as the Amazon River ( Koblinsky et al., 1993; Birkett, 1998; De Oliveira Campos et al., 2001 ; Frappart et al., 2006; Leon et al., 2006; Zakharova et al., 2006; Santos da Silva et al., 2010 ). Few studies devoted to an in-depth assessment of radar altimetry over other rivers, such as Ob, Mekong, Negro, Gange and Brahmaputra have been published ( Kouraev et al., 2004; Frappart et al., 2005; Getirana et al., 2009; Pereira Cardenal et al., 2011; Biancamaria et al., 2011; Birkinshaw et al., 2010; 2012 ).

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni Additionally, although not specifically dedicated, sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) also have the potential to provide river discharge estimates. A preliminary example, in which the discharge is estimated by MODIS considering a very short time series, is reported in Brakenridge and Anderson (2006). The study by Tarpanelli et al. (2013, RSE) shows that MODIS can give good estimates of discharge and flow velocity for medium sized basins (70000 km 2 ) characterized by high temporal variability of discharge and it can be used also for ungauged river sites.

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni To evaluate the potential of two sensors, radar altimetry and MODIS, for the estimation of river discharge in a medium sized basin (70000 km 2 ) in Northern Italy (Po river) also in absence of bathymetry.

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni 2 channels at 250 m 5 channels at 500 m 29 channels at 1 km 1-2 images a day SPATIALRESOLUTION TEMPORALRESOLUTION 70 km inter-track spacing at the Equator beam footprint width about 3.5 km 35 days SATELLITE AQUA (2002-today)ENVISAT ( ) RADAR ALTIMETER MODIS MODerate resolution Imaging Spectroradiometer FREE DOWNLOAD

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni Q = v ∙ A MODIS Altimetry Entropic model for the bathymetry (Moramarco et al., 2013) A = f(h, geometry) Known from bathymetry surveys from bathymetry surveys Unknown

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni VS3

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni (Brakenridge et al., 2005; 2007) C= Land pixel M=Water pixel 1 C = land pixel (located near the river in an area free of surface water even during high floods) M = water pixel (located within the river with permanent presence of water) wet dry wet 123 flood signal C/M increases with the presence of water and, hence, of discharge

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni 1. Selection of a box centered on the investigated gauged station from each MODIS image AQUA- MODIS Reflectance value of Channel 2 (10-Feb :10)

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni 2. Exclusion of pixels affected by cloud cover and/or snow by using a simple threshold and a visual inspection Gauged Stations Number of free cloud images Piacenza864 Cremona798 Borgoforte1103 Pontelagoscuro921

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni 3. Choice of the M and C pixels and calculation of the ratio C/M PONTELAGOSCURO

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni 3. Choice of the M and C pixels and calculation of the ratio C/M PONTELAGOSCURO 4. Application of the smoothing exponential filter (C/M*)

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni PONTELAGOSCURO BORGOFORTE CREMONA PIACENZA Stazione strumentata PIACREBRGLAG RMSE (C/M*-v) NS (C/M*-v) LOCAL RELATIONSHIPS Stazione strumentata PIACREBRGLAG Corr (C/M*-Q) Corr (C/M*-v)

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni Gauged station PIACREBRGLAG RMSE (C/M*-v) NS (C/M*-v) REGIONAL RELATIONSHIP

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni r=0.60

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni r = 0.88 NS = 0.78 RMSE = 0.70 m

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni RMSE (m 3 s -1 ) NS (-) RRMSE (%) MAE (m 3 s -1 ) r (-) Actual geometry (Q MODIS+ALT )

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni Flow depth Maximum flow velocity Surface water velocity Entropic parameter v maxS = 1.5 v m Mean flow velocity from MODIS D= H – z 0 Maximum depth

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni RMSE=118 m 2 NS=0.94

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni RMSE (m 3 s -1 ) NS (-) RRMSE (%) MAE (m 3 s -1 ) r (-) Actual geometry (Q MODIS+ALT ) Simulated geometry (Q MODIS+ALT+ENTR )

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni The obtained good results demonstrate the potential of coupling the two satellite sensors to calculate the discharge also in ungauged sites. This aspect may be of particular interest in view of forthcoming Sentinel-3 mission, in which two similar sensors, with improved vertical accuracy and spatial - temporal resolution, will be onboard the same satellite platform.

PremesseObiettivi Telerilevamento e sensori Aree allagate da SAR Portata da MODIS Portata da altimetro Portata da MODIS + altimetro Conclusioni GRAZIE PER L’ATTENZIONE DOMANDE?