Coulomb crystallization of highly charged ions Lisa Schmöger (Max-Planck-Institut für Kernphysik / Physikalisch-Technische Bundesanstalt) COOL’15 Workshop.

Slides:



Advertisements
Similar presentations
Optical clocks, present and future fundamental physics tests
Advertisements

Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
大阪大学 大学院基礎工学研究科 占部研究室 田中 歌子
electrostatic ion beam trap
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Dylan Yost, Arman Cingoz, Tom Allison and Jun Ye JILA, University of Colorado Boulder Collaboration with Axel Ruehl, Ingmar Hartl and Martin Fermann IMRA.
6/17/20141 Absolute nuclear charge radii for elements without stable isotopes via precision x-ray spectroscopy of lithium-like ions Andrew Senchuk, Gerald.
Blackbody radiation shifts and magic wavelengths for atomic clock research IEEE-IFCS 2010, Newport Beach, CA June 2, 2010 Marianna Safronova 1, M.G. Kozlov.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Extra Dimensions, Dark Energy and the Gravitational Inverse-Square Law ? Liam J. Furniss, Humboldt State University.
Polarizabilities, Atomic Clocks, and Magic Wavelengths DAMOP 2008 focus session: Atomic polarization and dispersion May 29, 2008 Marianna Safronova Bindiya.
A Search for Temporal and Gravitational Variation of  in Atomic Dysprosium Variation of Constants & Violation of Symmetries, 24 July 2010 Arman Cingöz.
SPEC(troscopy) -Trap Outline of talk Introduction – motivation for two cross continent traps Imperial College Group – areas of interest and expertise SPECTRAP/SPECTRAP’
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
FKK 2010, St. Petersburg, Precision calculations of the hyperfine structure in highly charged ions Andrey V. Volotka, Dmitry A. Glazov, Vladimir.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Precision Molecular Ion Spectroscopy: A New Probe for New Physics Brian Odom.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Contribution of Penning trap mass spectrometry to neutrino physics Szilárd Nagy MPI-K Heidelberg, Germany New Instruments for Neutrino Relics and Mass,
One-Dimensional Ordering in High-Energy Ion Beams Håkan Danared Manne Siegbahn Laboratory CERN 8 December 2008.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
Field enhancement coefficient  determination methods: dark current and Schottky enabled photo-emissions Wei Gai ANL CERN RF Breakdown Meeting May 6, 2010.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
The 2p-3d Electron Transition Multiplet of Ar +13 : A Stellar Density Diagnostic Laura Heeter Kristina Naranjo-Rivera
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Precision spectroscopy of HCI in a reaction microscope Max-Planck-Institut für Kernphysik, Heidelberg C. Dimopoulou HITRAP Meeting, May 2005, Munich.
Cavity-Mediated Molecular Cooling. 2 Cold Quantum Matter LASER COOLING absorption velocity-dependent emission bathe atoms in red-detuned light Doppler.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Rydberg atoms part 1 Tobias Thiele.
The Constancy of Constants. Dirac’s Large Number Hypothesis “A New Basis for Cosmology” Proceedings of the Royal Society of London, A165, 199 (1938) Ratio.
Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes.
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
Laboratory Tests on Variations of Fundamental Constants Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig,
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Tests of Lorentz Invariance with atomic clocks and optical cavities Fundamental Physics Laws: Gravity, Lorentz Symmetry and Quantum Gravity - 2 & 3 June.
The bound-electron g factor in light ions
Precision Tests of Fundamental Interactions with Ion Trap Experiments
Review on the fine-structure constant and the g-2 electron
Magdalena Kowalska CERN, EP-Dept.
A single trapped Ra+ Ion to measure Atomic Parity Violation
Beryllium ions in segmented Paul trap
Probing New Forces with Isotope Shift Spectroscopy
Measurement Science Science et étalons
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
Preparing antihydrogen at rest for the free fall in
B. Liu, J. Goree, V. Nosenko, K. Avinash
Nicolaus Copernicus University
NEW DIRECTIONS IN ATOMIC PARITY VIOLATION
University of California, Berkeley
Entangling Atoms with Optical Frequency Combs
Presentation transcript:

Coulomb crystallization of highly charged ions Lisa Schmöger (Max-Planck-Institut für Kernphysik / Physikalisch-Technische Bundesanstalt) COOL’15 Workshop

Bildreferenzen: (links), Piet O. Schmidt (rechts oben), (rechts unten) Test predicitions of the Standard Model High-Energy Physics (e.g. LHC) high energy Atomic physics (e.g. atomic clocks) high precision Are fundamental constants constant? Are fundamental constants constant? says yes

dimensionless frequency measurement for highest accuracy Why ? atomic calculations  most stringently tested theory q: sensitivity coefficient (relativistic contribution) numerical value of fine structure constant: CODATA 2010 Search for alpha variation astrophysical investigations:  Webb et al., Phys. Rev. Lett. 107, (2011)  Berengut et al., Europhys. Lett. 97, (2012) What happens if  changes ?

? Laboratory experiment: compare 2 accurate frequency references with different sensitivities to over long period of time Laboratory experiment: compare 2 accurate frequency references with different sensitivities to over long period of time numerical value of fine structure constant: CODATA 2010 Search for alpha variation

Hg + /Al + Atomic clock comparison T. Rosenband et al., Science 319 (2008) strong α dependence weak α dependence  Need tighter limits on alpha variation  Need factor 100 improvement to test Australian dipole

Where to find two orders of magnitude?

Highly charged ions for novel optical clocks and the search for alpha variation remove several e - low polarizabilities: low susceptibility to external fields for low systematic error strong relativistic effects: enhanced sensitivity to α-dot forbidden transitions in optical regime (e.g. level crossings): high f/∆f for atomic clock with level accuracy transitions with different large (!) q values of opposite sign: two frequency references with one ion q: sensitivity coefficient (relativistic contribution)

10 HCI Theory proposals: HCIs for novel optical clocks and the search for alpha variation Highly charged ions for atomic clocks, quantum information, and search for α variation, M.S. Safronova et al., Phys. Rev. Lett. 113, A. Derevianko et al., Phys. Rev. Lett. 109, (2012) J.C. Berengut at al., Phys. Rev. Lett. 109, (2012) Electron-Hole Transitions in Multiply Charged Ions for Precision Laser Spectroscopy and Searching for Variations in α, J.C. Berengut et al., Phys. Rev. Lett. 106, (2011) J.C. Berengut et al., Phys. Rev. Lett. 105, (2010) V. I. Yudin et al., Phys. Rev. Lett. 113, (2014) V.A. Dzuba et al., Phys. Rev. A. 86, (2012) Ir 17+ V.A. Dzuba et al., Phys. Rev. A. 91, (2015) 2015

Highly charged ions for novel optical clocks and the search for alpha variation Objective: ultra-precise laser spectroscopy with HCI Prerequisite: HCI need to be cold and strongly localized

e - -beam Ar Ar 13+ (Electron Beam Ion Trap) EBIT – production of HCI But: MK! trap electrodes e - collector e - gun

Laser spectroscopy of HCIs Fluorescence laser spectroscopy in an EBIT on 2 P 3/2 – 2 P 1/2 M1 transitions in Ar 13+ and Fe 13+ in combination with evaporative cooling K. Schnorr et al., Astrophys. J. 776, 121 (2013) V. Mäckel et al., PRL 107, (2011) T HCI ~ 10 5 K  Δf Doppler ~ 20 GHz (natural linewidth: ~ 10 Hz) Fe 13+ Limited by Doppler linewidth  different cooling method (and ion trap)

e - -beam Ar Ar 13+ EBIT – source for HCI pulsed ion 2 Hz E HCI ~ 1keV/Q ΔE HCI ~ 20eV/Q Ar 13+

From ion source To Paul trap ( ) mm PDT1PDT2 Deceleration and Precooling of ion pulses V PDT2 > V PDT1

Retrapping HCI in a cryogenic linear Paul trap Electrostatic mirrors for HCI ping-pong 1 st 2 nd

Be atoms PI laser cooling laser Sympathetic cooling of HCI: MK to mK produce laser cooled Be + Coulomb crystal in linear Paul trap inject, store and sympathetically cool & crystallize HCIs (Ar 13+ ) imaging lens trap electrodes cryogenic shields Science 347, 6227 (2015) ~1mm

T HCI ?

Sympathetic cooling of HCI – MK to mK T Be+ < 35 mK T Ar13+ < 235 mK (~2µeV/Q)

Mixed-species crystals  Ion strings Use limits to Mathieu stability in a-q parameter space  expel Be +, keep Ar 13+ M. Drewsen and A. Broner, Harmonic linear Paul trap: Stability diagram and effective potentials, PRA 62, (2000)

RMS spot size on camera Sympathetic cooling of HCI – MK to mK S. Knünz et al., Phys. Rev. A. 85, (2012)

Q HCI ?

Sympathetic cooling of HCI: Ar X+ Comparison of theoretical and experimental Be + ion positions

exposure time: 5s video: 7 fps trapping time: ~ 4 min 1mm 300 µm 20 µm Sympathetic cooling of HCI – Configurations Single ion stage: prerequisite for quantum logic spectroscopy P.O. Schmidt et al., Science 309, 749 (2005)

Summary – Versatile preparation technique

Motional control over trapped HCI enables:  High-precision optical laser spectroscopy (e.g. of 2 P 3/2 - 2 P 1/2 M1 transition in Ar 13+ at 441nm)  Quantum metrology: Ultimate accuracy using quantum logic readout at PTB  novel clock at level accuracy  test α-dot at /year  Highest-resolution VUV and x-ray spectroscopy of HCIs  …….

 Experiment\MPIK José Crespo López-Urrutia Stefanie Feuchtenbeiner Peter Micke Baptist Piest Lisa Schmöger Maria Schwarz Oscar Versolato Alexander Windberger Thomas Baumann  Experiment\PTB Piet Schmidt Joachim Ullrich Matthias Kohnen Tobias Leopold The team & acknowledgements  Experiment\Aarhus University Michael Drewsen Anders Hansen  Simulation\Marseille University Jofre Pedregosa-Gutierrez