Why was Einstein such a smart guy? Steve Manly Department of Physics and Astronomy University of Rochester.

Slides:



Advertisements
Similar presentations
Chapter 38A - Relativity A PowerPoint Presentation by
Advertisements

Caroline Chisholm College
Chapter S2 Space and Time
Time dilation D.3.1Describe the concept of a light clock. D.3.2Define proper time interval. D.3.3Derive the time dilation formula. D.3.4Sketch and annotate.
Special Relativity Unit 7. The first person to understand the relationship between space and time was Albert Einstein. Einstein went beyond common sense.
Physics 3 for Electrical Engineering Ben Gurion University of the Negev
SPECIAL RELATIVITY -Postulates of Special Relativity -Relativity of time –> time dilation -Relativity of length –> length contraction © 2005.
PHY 1371Dr. Jie Zou1 Chapter 39 Relativity. PHY 1371Dr. Jie Zou2 Outline The principle of Galilean relativity Galilean space-time transformation equations.
Special Theory of Relativity
PH 103 Dr. Cecilia Vogel Lecture 14 Review Outline  Consequences of Einstein’s postulates  time dilation  simultaneity  Einstein’s relativity  1.
Einstein and the relativity of space and time Steve Manly Department of Physics and Astronomy University of Rochester.
Physics for Scientists and Engineers, 6e
2. Einstein's postulates in special theory of relativity
Outline - Feb. 8, 2010 Postulates of special relativity State of Motion Reference Frames Consequences of c = constant Time dilation and length contraction.
Physics 213 General Physics Lectures 20 & Last Meeting: Optical Instruments Today: Optics Practice Problems, Relativity (over two lectures)
The Death of High Mass Stars. Quiz #8 On the H-R diagram, a high mass star that is evolving off the main sequence will become redder in color and have.
Introduction to special relativity
Special Theory of Relativity
Phy107 Fall From last time… Galilean Relativity –Laws of mechanics identical in all inertial ref. frames Einstein’s Relativity –All laws of physics.
Welcome to our Special Relativity Minicourse Brought to you by Quarknet Physics Department of the University of Houston Physics and Astronomy Department.
Time Dilation.
Special Relativity Einstein (1905): Three Nobel-Prize worthy publications On unrelated subjects: Brownian motion Photo-electric effect (Nobel prize) “On.
 Newtonian relativity  Michelson-Morley Experiment  Einstein ’ s principle of relativity  Special relativity  Lorentz transformation  Relativistic.
Special Relativity: Time Dilation and Length Contraction SPH4U.
Special Theory of Relativity
Chapter 9 Relativity Basic Problems The formulation of Newtonian mechanics is based on our daily experience and observation. But, Newtonian mechanics.
Physics Relativistic Motion. Objectives By the end of this lesson, you should be able to Explain the General Theory of Relativity as it relates to velocity.
The Theory of Special Relativity Ch 26. Two Theories of Relativity Special Relativity (1905) –Inertial Reference frames only –Time dilation –Length Contraction.
Time Dilation We can illustrate the fact that observers in different inertial frames may measure different time intervals between a pair of events by considering.
Welcome to our Special Relativity Minicourse Brought to you by Quarknet Physics Department of the University of Houston Physics and Astronomy Department.
Astronomy 1143 – Spring 2014 Lecture 18: Special Relativity.
Phy 107 Fall From Last Time Physics changed drastically in the early 1900’s Relativity one of the new discoveries –Changed the way we think about.
Chapter 26 Relativity. General Physics Relative Motion (Galilean Relativity) Chapter 3 Section 5
1 Relativity  H3: Relativistic kinematics  Time dilation  Length contraction.
Handy Dandy Chart  = 1v = 0  = 2v =.866 c  = 2.5v =.92 c  = 7v =.99 c  = 10v =.995 c  = 100v = c.
Physics 2170 – Spring Einstein’s theory of special relativity Homework was due at 12:50pm today in the.
Chapter 39 Relativity. A Brief Overview of Modern Physics 20 th Century revolution 1900 Max Planck Basic ideas leading to Quantum theory 1905 Einstein.
Mon. Jan. 28 – Physics Lecture #4 Relativity – Basic Postulates 0) Quiz 1) Basic Postulates 2) Relative velocities 3) Light Clocks 4) Comparing time between.
R1 Everything should be made as simple as possible, but not simpler -A. Einstein.
The lull before the storm Newton developed his theory of gravity in Maxwell unified electricity and magnetism in It was verified experimentally.
Unit 1B: Special Relativity Motion through space is related to motion in time.
X’ =  (x – vt) y’ = y z’ = z t’ =  (t – vx/c 2 ) where   1/(1 - v 2 /c 2 ) 1/2 Lorentz Transformation Problem: A rocket is traveling in the positive.
Space and Time © 2014 Pearson Education, Inc..
The Essence of Special Relativity Daniel Berdine* Department of Physics and Astronomy University of Rochester * Original lectures by Steve Manly.
Jan 5 th Test tomorrow on light Posters due January 15th Summative Jan 20 th and 21 st Final exam January 29 th 9:15-11:15 Today: The myth of simultaneity.
Relativity II The Relativity Postulate: The laws of physics are the same for all observers in all inertial reference frames. No one frame is preferred.
Bell Ringer If you were to wake up on the bus and could not see out any of the windows, would you be able to tell if you were moving or not?
RELATIVITY TOOLKIT Time Dilation:  t(v) = [1/(1 – v 2 /c 2 ) 1/2 ]  t(0) Length Contraction: d(v) = (1 – v 2 /c 2 ) 1/2 d(0) Change in Synchronization:
W.Murray PPD 1 Bill Murray RAL, STFC RAL 5 th November 2007 Maths: from a physicist Maths: from a physicist.
Motion ONE DIMENSION POSITION: FRAME of REFERENCE X
Special Relativity and Time Dilation
Supporting Questions:
How would you describe how fast an object is moving?
Reading Quiz Most of the power released by a hydrogen bomb comes from which of the following? nuclear fusion nuclear fission TNT cold fusion.
ConcepTest 2.1 Walking the Dog
Einstein’s postulates
Chapter S2 Space and Time
Introduction to Relativity
Wacky Implications of Relativity
Physics Special Relativity
General Physics (PHY 2140) Lecture 24 Modern Physics Relativity
General Physics (PHY 2140) Lecture 25 Modern Physics Relativity
Late 1800’s: Physics was triumphant!
Lorentz Transformation
Special Relativity: Time Dilation and Length Contraction
RELATIVITY III SPECIAL THEORY OF RELATIVITY
Key Areas covered The speed of light in a vacuum is the same for all observers. The constancy of the speed of light led Einstein to postulate that measurements.
Special Relativity Chapter 1-Class3.
Physics 1161: PreLecture 26 Special Relativity 1.
Chapter 28 Relativity.
Presentation transcript:

Why was Einstein such a smart guy? Steve Manly Department of Physics and Astronomy University of Rochester

What is time??

4 mi/hr 2 mi/hr Speed with respect to you is 4 mi/hr Speed with respect to you is = 6 mi/hr Velocities add!! It’s common sense!

The speed of light is greater for beam I, beam II or beam III? Experiment says the speed of light is the same in all directions!! I II Car moves while passenger shines a flashlight. V III

Enter our man Einstein! Weird, huh? What does it mean for the real world?

H v Einstein thought experiment: Consider a beam of light that is emitted from the floor of a train that bounces off a mirror on the ceiling and returns to the point on the floor where it was emitted.

Fact: Light is emitted and detected at point A. This fact must be true no matter who makes the measurement!!!! H v A

Sam H Velocity of light = c c = distance/time c = 2H/T sam T sam = 2H/c Sam is on the train

H v sally Light is emitted Sally watches the train pass and makes the same measurement.

H v

sally H v Light is emitted 12 Light returns Sally is standing still, so it takes two clocks.

SamSally Sally sees the light traveling further. If light travels at a constant speed, the same “event” must seem to take longer to Sally than Sam! Time is relative … not absolute!!

Distance train travels while light is traveling = VT sally From Sally’s point of view Path light takes to mirror Path light takes from mirror to detection H Makes use of Pythagorian theorem

From Sally’s point of view H c = distance/time = 2D/T sally T sally = 2D/c

This number is >1. It becomes larger as v approaches c. Sam (on train)Sally (on ground) 2H/T sam = cc = 2D/T sally A bit of algebra.

Sam (on train)Sally (on ground) 2H/T sam = cc = 2D/T sally

Recall 2H/T sam = c or 2H=cT sam

Think about it! Sam and Sally measure the time interval for the same event. The ONLY difference between Sam and Sally is that one is moving with respect to the other. Yet, T sally > T sam The same event takes a different amount of time depending on your “reference frame”!! Time is not absolute! It is relative!

Can this be true?? Experiment says YES! ground plane

Can this be true?? Experiment says YES! ground plane

ground Less time elapsed on the clocks carried on the airplane

What is length??

V Measure the length of a boxcar where you are on the car. Measure the length of a boxcar moving by you.

Length is relative, too! V=0 Large V

Albert Einstein revolutionized our view of space, time and simultaneity. His ideas/theories about “relativity” have been experimentally verified again and again and are widely accepted as truth in as much as science can be truth. The dude was smart.

But he was also just a person … not so different from you and me.