Β -decay study of neutron-rich Tl and Pb isotopes CERN-ISOLDE, Switzerland, E.Rapisarda, J.Kurcewicz, M. Kowalska, V.N. Fedosseev, S. Rothe,, B.A. Marsh.

Slides:



Advertisements
Similar presentations
Addendum to IS534:Part I: Beta-delayed fission, laser spectroscopy and shape-coexistence studies with At beams Part II: Delineating the island of deformation.
Advertisements

Decay spectroscopy of neutron- rich Lead isotopes “Universa Universis Patavina Libertas” 1.Experimental details 2.Preliminary results 3.Seniority scheme.
Shell model studies along the N~126 line Zsolt Podolyák.
Coulomb excitation of the band-terminating 12 + yrast trap in 52 Fe IFIC, CSIC – University of Valencia, Spain University and INFN-Sezione di Padova, Italy.
Study of single particle properties of neutron-rich Na istopes on the „shore of the island of inversion“ by means of neutron-transfer reactions Thorsten.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
First Experiments with the Laser Ion Source and Trap (LIST)
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
The Long and the Short of it: Measuring picosecond half-lives… Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
Radioactive Ion Beam (RIB) Production at ISOLDE by the Laser Ion Source and Trap (LIST) Sven Richter for the LIST-, RILIS- and ISOLDE IS456 Collaborations.
UNIVERSITY OF JYVÄSKYLÄ Results from the first tests with the SPEDE spectrometer Philippos Papadakis ISOLDE Workshop and Users Meeting 2014.
Status Report on Decay Spectroscopy and In-Source Laser Spectroscopy on Heavy Nuclei at ISOLDE Piet Van Duppen ISOLDE CERN, Switzerland IKS-K.U.Leuven,
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Status of the ISOLDE DECAY STATION - IDS Hilde De Witte IDS status report, ISCC, June 24 th 2014.
Preparation of an isomerically pure beam and future experiments Outline TAS Workshop, Caen, March 30-31, 2004 Klaus Blaum for the ISOLTRAP Collaboration.
Windmill Collaboration Status Report on Studies in the Lead Region Addenda IS456/IS534 Andrei Andreyev University of York, UK and JAEA, Tokai, Japan on.
Paul Greenlees, Department of Physics, University of Jyväskylä, FinlandENAM’04, Callaway Gardens, Sept04 In-beam and decay spectroscopy of transfermium.
Proposal: Beta-delayed neutron spectroscopy of Ca.
 -delayed fission of neutron-deficient Fr and At isotopes Lars Ghys 1,2 1 Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001.
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ — ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.
Evolution of Nuclear Structure with the Increase of Neutron Richness – Orbital Crossing in Potassium Isotopes W. Królas, R. Broda, B. Fornal, T. Pawłat,
Lifetime measurement in 74 Ni: probing the core polarisation around the double magic 78 Ni G. de Angelis, D.R. Napoli, E. Sahin, J.J. Valiente-Dobon INFN,
Clean Beams at ISOL Facilities GSI Workshop on Astrophysics and Nuclear Structure, January 15-21, 2006 in Hirschegg, Austria O.Arndt, H. Frånberg, C.Jost,
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
UNIVERSITY OF JYVÄSKYLÄ RDDS measurements at RITU and prospects at HIE-ISOLDE T. Grahn University of Jyväskylä HIE-ISOLDE Spectrometer Workshop, Lund
Kieran Flanagan University of Manchester. Since 1995 Before 1995 Z N Key questions Does the ordering of quantum states change? Do new forms of nuclear.
Electromagnetic moments for isomeric states in nuclei far from stability in nuclei far from stability NIPNE Bucharest ↔ INFN LNL Legnaro 10 experiments.
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
A systematic study of  - decay of neutron-rich Rh and Ag isotopes Sixth China Japan Joint Nuclear Physics Symposium Shanghai, May 16-20, 2006 Youbao Wang.
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
In-source laser spectroscopy of isotopes far from stability (ISOLDE, CERN & IRIS, PNPI) Anatoly Barzakh PNPI.
Collinear laser spectroscopy with the COLLAPS setup M. L. Bissell on behalf of the COLLAPS collaboraion IS508: Mn IS519: Zn IS529: Ca.
Along the N=126 closed shell: study of 205 Au through its πh 11/2 -1 isomeric decay Zs.Podolyák, A.Algora, C.Brandau, K.Burkard, P. Butler, J.Cederkall,
James Cubiss University of York On behalf of the IS534, Sep 2014 collaboration Hyperfine structure studies of At isotopes using in-source.
Radioactive beam spectroscopy of 212 Po and 213 At with the EXOGAM array Nick Thompson University of Surrey.
Elisa Rapisarda, CERN, PH Division
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
B elgian R esearch I nitiative on e X otic nuclei ISOLDE INTC-P-316 Spokespersons: G. Neyens, M.M. Rajabali, K.U. Leuven Local contact: K.T. Flanagan,
Leuven - Mainz - ISOLDE collaboration at CERN
Title page J Van de Walle 1, I. Stefanescu 1, P Mayet 1, O Ivanov 1, F Aksouh 1, D Smirnov 1, JC Thomas 1, R Raabe 1, M Huyse 1, P Van Duppen 1 1 IKS KULeuven.
Andreas Görgen INTC Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler.
ISOLDE Physics Report Magdalena Kowalska. Injector schedule since last meeting 2 September: confirmation of 2 more weeks with protons – until December.
Recoil-beta tagging David Jenkins. Odd-odd N=Z Fascinating laboratory for studying interplay of T=0 and T=1 states Very unusual low level density for.
Proposal: Beta-delayed neutron spectroscopy of 54 Ca Addendum of IS599.
Decay studies in Exotic, Neutron- Rich A~200 Nuclei Steven Steer for the Stopped Beam RISING Collaboration Dept. of Physics, University of Surrey Guildford,
UNIVERSITY OF JYVÄSKYLÄ Mapping the boundaries of the seniority regime and collective motion: Coulomb excitation studies of 208 Po and 210,212 Rn Addendum.
Exotic neutron-rich nuclei
LIST status and outlook Sven Richter for the LIST-, RILIS- and Target-Collaborations 21 st of August 2013.
Nuclear moments and charge radii of Mg isotopes from N=8 up to (and beyond) N=20 Univ. Mainz: M. Kowalska, R. Neugart K.U.Leuven: D. Borremans, S. Gheysen,
ISOLDE Workshop CERN, 5 December 2011 Beta-decay studies of neutron-rich manganese isotopes D. Pauwels 1,2, D. Radulov 1, J. Van de Walle 3, I.G. Darby.
1 BETA-DELAYED NEUTRON SPECTROSCOPY OF 51,52,53,(54) Ca A. Gottardo, R. Grzywacz, M. Madurga ISOLDE Workshop2015.
Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr M. Albers 1, N. Warr 1, D. Mücher 1, A. Blazhev 1, J. Jolie 1, B. Bastin 2, C. Bernards 1, J. Butterworth.
 -delayed fission of neutron-deficient Fr and At isotopes Lars Ghys 1,2 1 Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001.
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
In-source laser spectroscopy of Pb, Bi and Po isotopes at ISOLDE Charge Radii around Z = 82 and N = 104 In-source resonant photoionization spectroscopy.
KS group meeting April 2007Transfer reactions at REX-ISOLDE: Status and a physical case to be studied K. U. Leuven One Nucleon Transfer Reactions Around.
Coulomb excitation of the two proton-hole nucleus 206 Hg CERN-ISOLDE, Geneva, Switzerland (M. Kowalska, E. Rapisarda, T. Stora, F.J.C. Wenander) GSI, Darmstadt,
Georgi Georgiev CSNSM, Orsay, France Nuclear structure studies at the r-process path Coulomb excitation of odd-A neutron-rich Rb isotopes at REX-ISOLDE.
Two-phonon octupole collectivity in the doubly-magic nucleus 146 Gd INFN Laboratori Nazionali di legnaro and CERN Isolde Giacomo de Angelis.
January 30, 2007 CERN Resonant laser ion sources By V. Fedosseev.
In-source laser spectroscopy of mercury isotopes (P-424)
Georgi Georgiev CSNSM, Orsay, France
on behalf of ‘Astatine and Gold’ Collaboration
Shape coexistence measurements in even-even neutron-deficient Polonium isotopes by Coulomb excitation, using REX-ISOLDE and the Ge MINIBALL array Proposal.
Addendum to the IS608 Proposal Shape-coexistence and shape-evolution studies for bismuth isotopes by in-source laser spectroscopy A. E. Barzakh on.
Laser assisted decay spectroscopy at the cris beam line at
ISOLDE Workshop and Users Meeting 2017
Irina Stefanescu1, O. Ivanov1, J. Van de Walle1, N. Patronis1, D
Fixed Decay Station at ISOLDE
Presentation transcript:

β -decay study of neutron-rich Tl and Pb isotopes CERN-ISOLDE, Switzerland, E.Rapisarda, J.Kurcewicz, M. Kowalska, V.N. Fedosseev, S. Rothe,, B.A. Marsh INFN, Sezione di Padova and LNL, D. Bazzacco, S. Lenzi, S. Lunardi, F. Recchia, C. Michelagnoli, A. Gottardo, G. de Angelis, J.J. Valiente-Dobón, P. John, D. Napoli, V.Modamio, D. Mengoni, IKS-KULeuven, Belgium, H. De Witte, M.Huyse, P.Van Duppen, R. Raabe, K.Wrzosek-Lipska, C.Sotty Instituto de Fisica Corpuscular, Universita’ de Valencia, Spain A.Algora 1, University of York, U.K., A.N. Andreyev, D. Jerkins Department of Nuclear Physics and Biophysics, Comenius University, Slovakia S. Antalic 3, Petersburg Nuclear Physics Institute, Gatchina, Russia, A.E. Barzakh, D.V.Fedorov, M.D. Seliverstov, University of Köln, Germany A. Blazhev 6, P. Reiter, N. Warr, J. Jolii, University of Manchester,U.K. J.Billowes, T.E. Cocolios, T. Day Goodacre, K.T. Flanagan, I. Strashnov, University of Surrey, U.K., R.Carroll 8, Z.Podolyak, P.M.Waker, C. Shand, Z. Patel, P.H. Regan University of Jyväskylä, Helsinki Institute of Physics, Finland, T. Grahn, P.T. Greenlees, Z. Janas, J.Pakarinen, P. Rahkila University of Warsaw, Faculty of Physics, Poland, C.Mazzocchi,, M. Pfützner, Institut fur Physik, Gutenberg Universitat, Germany, T. Kron, K.D.A.Wendt, S. Richter 14 Department of Physics, University of Liverpool, U.K., B.Cheal, D. Joss, R. Page, IFIN-HH, Bucharest R. Lica, N. Marginean, R. Marginean, C. Mihai, A.Negret, S. Pascu

Physical Case Nuclear-Structure beyond 208 Pb N = Pb 126 Z =82 N=126 g 9/2 Study the development of nuclear structure in the nuclei beyond N=126  What the position of single particle orbitals?  What does the effective proton-neutron interaction look like?

Physics Motivation  Seniority scheme Experimental level scheme for Pb, Hg consistent with (g 9/2 ) n dominance low-lying states in odd-mass Tl described as (g 9/2 ) 2   (s -1 1/2 ) or  (d -1 3/2 )  Kuo-Herling realistic interaction (T.T.S. Kuo ans G.H. Herling, U.S. Naval Research Laboratory Report N.2258, 1971)  Inclusion of the three-body forces is essential A. Gottardo et al. PRL109, (2012) The region around 208 Pb has been very difficult to populate experimentally due to its large A and Z. = 130 g 7/2 d 5/2 h 11/2 d 3/2 s 1/2 h 9/2 f 7/2 h 9/2 i 13/2 p 3/2 f 5/2 g 9/2 p 1/2  =  Lifetime measurements in 211,212,213 Tl  Lifetime measurements in 218,219 Bi  Three high-spin isomers in 211 Pb and decay scheme  8 + isomers in 208 Hg and 210 Hg  8 + isomers in 212,214,216 Pb  17/2 + isomer in 209 Tl (95 ns)   -decay of 215 Pb, 215,216,217,218 Bi N. Al-Dahan et al., Phys. Rev. C80 (2009) ; A. Gottardo et al., Phys. Lett. B725 (2013) 292 A. Gottardo et al., Phys. Rev. Lett. 109 (2012) N. Al-Dahan et al., Phys. Rev. C80 (2009) G.J. Lane et al., Phys. Lett. B 606 (2005) 34 G. Benzoni et al., Phys. Lett. B715 (2012) 293 H. De Witte et al., Phys. Rev. C87 (2013) ; J. Kurpeta et al., Eur. Phys. J. A18 (2003) 31 H. De Witte et al., Phys.Rev. C 69, (2004) f 7/2

Half-life of Tl 211 Pb   211 Bi t 1/2 =88 s Q = 4.4 MeV t 1/2 =36.1m t 1/2 =2.14m 211 Tl (1/2 + ) G. Benzoni et al., Phys. Lett. B715 (2012) 293 (9/2 + ) (9/2 - ) 211 Tl t 1/2 =88 s  50% uncertainty 212 Tl t 1/2 =96 s  50% uncertainty 213 Tl t 1/2 =46 s  100% uncertainty The  -decay would be dominated by Gamow- Teller transitions to high energy states (partially occupied neutron shells 3d 5/2 or 4s 1/2 above g 9/2 ) State-of-the-art models used in r-process calculations underestimate the experimental results Data collected at GSI (not published) show a change in structure with respect to 211 Pb Low-lying states in the daughter Pb can be populated and studied. = 130 g 7/2 d 5/2 h 11/2 d 3/2 s 1/2 h 9/2 f 7/2 h 9/2 i 13/2 p 3/2 f 5/2 g 9/2 p 1/2  = f 7/2 i 11/2 i 13/2 Half-life measurements will shed further light on the discrepancy

N. Al-Dahan et al., Phys. Rev. C80 (2009) Long-living isomers in 211,213 Tl - 211,213 Tl: Experimental evidence (data not published) of different structure with respect to 209 Tl; -Shell model calculations suggest inversion of 9/2 + and 7/2 + -SPIN TRAP  Long living isomers in 211,213 Tl??? A. Gottardo, PhD thesis, unpublished The occurrence of many high-spin single particle orbitals in the nuclei to be explored will give rise to several isomeric states

G.J. Lane et al., Phys. Lett. B 606 (2005) 34 Long-living isomers in 213 Pb -experimental evidence of short-lived isomeric decay; -The decay of the isomers shows a change in nuclear structure compared to 211 Pb -If (27/2) + moves below (23/2) +  SPIN TRAP  Long living isomers in 213 Pb ??? A. Gottardo, PhD thesis, unpublished

Proposed experiment Laser Spectroscopy AIM o identify long-living isomers in 211,213 Tl and 213 Pb Decay Spectroscopy AIM o lifetime of Tl with 10% uncertainity o decay scheme in Pb by  -decay Tl 4 Clovers 1 Miniball Triple cluster: Total γ detection efficiency is about 8-9% at 1.3MeV Total  detection efficiency is about 60%

Beam Time Request IsotopeRate on tape /sTime Expected n.  -  counts 211 Tl5401 shift1∙ Tl2251 shift6∙ Tl901 shift3∙ Tl363 shifts3∙ Tl126 shifts2∙ Pb2503 shifts2∙ Pb Reference47 (*) (*) H. De Witte et al., Phys. Rev. C87 (2013) UC x Target + quartz transfer line + LIST target  Expected strong Fr and Ra contamination up to 1000 x surface ion suppression  New development in RILIS  micro beam gate = 100 x Surface ion suppression A= : Pulsed-release technique  relatively longer lifetime of the  -decaying isotopes of interest compared to the significantly shorter lived Fr and Ra; Laser Ionization: RILIS (27% and 7% for Tl and Pb respectively)  We request therefore: Need 21 Shifts measurement 2 shifts for tuning the laser to Pb and Tl 4 shifts for laser - spectroscopy 15 Successfully used to study 219 Po (IS456) T 1/2 measurements  20% duty cycle

Collaboration CERN-ISOLDE, Switzerland, E.Rapisarda, J.Kurcewicz, M. Kowalska, V.N. Fedosseev, S. Rothe,, B.A. Marsh INFN, Sezione di Padova and LNL, D. Bazzacco, S. Lenzi, S. Lunardi, F. Recchia, C. Michelagnoli, A. Gottardo, G. de Angelis, J.J. Valiente-Dobón, P. John, D. Napoli, V.Modamio, D. Mengoni, IKS-KULeuven, Belgium, H. De Witte, M.Huyse, P.Van Duppen, R. Raabe, K.Wrzosek-Lipska, C.Sotty Instituto de Fisica Corpuscular, Universita’ de Valencia, Spain A.Algora 1, University of York, U.K., A.N. Andreyev, D. Jerkins Department of Nuclear Physics and Biophysics, Comenius University, Slovakia S. Antalic 3, Petersburg Nuclear Physics Institute, Gatchina, Russia, A.E. Barzakh, D.V.Fedorov, M.D. Seliverstov, University of Köln, Germany A. Blazhev 6, P. Reiter, N. Warr, J. Jolii, University of Manchester,U.K. J.Billowes, T.E. Cocolios, T. Day Goodacre, K.T. Flanagan, I. Strashnov, University of Surrey, U.K., R.Carroll 8, Z.Podolyak, P.M.Waker, C. Shand, Z. Patel, P.H. Regan University of Jyväskylä, Helsinki Institute of Physics, Finland, T. Grahn, P.T. Greenlees, Z. Janas, J.Pakarinen, P. Rahkila University of Warsaw, Faculty of Physics, Poland, C.Mazzocchi,, M. Pfützner, Institut fur Physik, Gutenberg Universitat, Germany, T. Kron, K.D.A.Wendt, S. Richter 14 Department of Physics, University of Liverpool, U.K., B.Cheal, D. Joss, R. Page, IFIN-HH, Bucharest R. Lica, N. Marginean, R. Marginean, C. Mihai, A.Negret, S. Pascu

5 μs beam gating test Narrow laser-ion bunch width + micro beam gate tests Laser-ion time structure: 5 μS FWHM! Ga mass marker High Ω cavities: 1.Thin graphite  2.Pyrolytic graphite  3.Sigradur ‘glassy’ graphite ☐ 4.Pulsed heating for higher voltage ☐ Ga 1 μs beam gate is possible! = 100 x Surface ion suppression! RILIS ionization scheme Solid-state switch ~ kHz Courtesy of Richard Catherall

Pb isotopes 540 ions/sec * 8h *3600 sec * 0.09 * 0.6 * 0.2 = 1.7 * 10^5 9% = gamma efficiency at 1.3 MeV 60% = beta efficiency 20% duty cycle

Courtesy of T.E. Cocolios proton in s 1/2 => mu = mu_N => g-factor = neutron in g 9/2 => mu = mu_N => g-factor = The additivity rule is given as: g_emp (I = Jp + Jn) = 0.5 * { gp + gn + (gp - gn) * (Jp*[Jp+1] - Jn*[Jn+1]) / (I*[I+1]) } = * (3 - 4*Jn*[Jn+1]) / (4*I*[I+1]) g_emp (9/2 = 1/2 + 4) = => mu = mu_N g_emp (13/2 = 1/2 + 6) = => mu = mu_N g_emp (17/2 = 1/2 + 8) = => mu = mu_N The hyperfine parameters become A( 1/2) = MHz A( 9/2) = MHz A(13/2) = 240 MHz A(17/2) = MHz We can definitely differentiate between the ground state and an isomer, but probably not tell which isomer we have.

J = 1/2 -> 3/2 (for the nm transition) Tl, I=1/2: using 205g Tl, A = GHz, mu = mu_N Tl, I=9/2: using 193m Tl, A = GHz (from Barzakh et al, PRC 2013) Tl, I=17/2: using 215 Ac, mu = 8 mu_N => A = GHz (using 205gTl as reference) 0 GHz isotope shift between the isomers. 1 GHz Gaussian x 1 GHz Lorentzian sigma. Courtesy of T.E. Cocolios Hyperfine Structure in 211 Tl

LIST target performances D.A. Fink et al. submitted to NIMB

Old run at ISOLDE in 2000 GPS separator A= 215 Laser tuned on Pb Hilde de Witte, PhD thesis, KULeuven 2004

Pb207 Pb206 Pb208 Bi209 Tl205

 -spectroscopy: Experimental Setup Windmill Chamber Annular Si Si pure 30 keV Tl beam from RILIS+ISOLDE Intensity = 10 4 pps C-foils 20 m g/cm 2 Si detectors Si Annular Si ff  30 keV beam from ISOLDE C-foil Ge detector #1

 technique based on in-source laser spectroscopy (Ü. Köster et al., NIM B, 160, 528(2000); L. Weissman et al., PRC65, (2000)).  set the laser frequency to select and maximize the production of the isomer of interest. Isomeric ISOLDE Intensity (a.u.) Frequency of the first transition (cm -1 ) Two SET of DATA No laser: Tl is Surface Ionized mixture of 2 -, 7 +, 10 - With laser: Laser set on 10 - enhanced 10 - state

Tl - Surface ionized Tl – laser ionized Hg 184 Au 184 Pt 184 Ir 2 +  keV 192 Au 4 +  keV Single γ - spectrum

506 keV 445 keV 374 KeV T 1/2 = 50(0.39) ms 1/10 of the expected 500 ms