Possibility of Synthesizing Doubly Magic Superheavy Nucleus Y. Aritomo Department of Electric and Electronic Engineering, Faculty of Science and Engineering,

Slides:



Advertisements
Similar presentations
SYNTHESIS OF SUPER HEAVY ELEMENTS
Advertisements

The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
The Dynamical Deformation in Heavy Ion Collisions Junqing Li Institute of Modern Physics, CAS School of Nuclear Science and Technology, Lanzhou University.
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
At the End of the Nuclear Map Yuri Oganessian Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow region,
沈彩万 湖州师范学院 8 月 11 日 ▪ 兰州大学 准裂变与融合过程的两步模型描述 合作者: Y. Abe, D. Boilley, 沈军杰.
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Fusion-Fission Dynamics for Super-Heavy Elements Bülent Yılmaz 1,2 and David Boilley 1,3 Fission of Atomic Nuclei Super-Heavy Elements (SHE) Measurement.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
NECK FRAGMENTATION IN FISSION AND QUASIFISSION OF HEAVY AND SUPERHEAVY NUCLEI V.A. Rubchenya Department of Physics, University of Jyväskylä, Finland.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
1 Role of the nuclear shell structure and orientation angles of deformed reactants in complete fusion Joint Institute for Nuclear Research Flerov Laboratory.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
Status of the experiments on the synthesis of Element 117
Role of mass asymmetry in fusion of super-heavy nuclei
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Production of elements near the N = 126 shell in hot fusion- evaporation reactions with 48 Ca, 50 Ti, and 54 Cr projectiles on lanthanide targets Dmitriy.
Dinuclear system model in nuclear structure and reactions.
W. Udo Schröder, 2007 Semi-Classical Reaction Theory 1.
Heavy Element Research at Dubna (current status and future trends) Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
The study of fission dynamics in fusion-fission reactions within a stochastic approach Theoretical model for description of fission process Results of.
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
2007/6/5 International Nuclear Physics Conference Experiments on Searching for the Heaviest Elements Kosuke Morita Superheavy Element Laboratory.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
II. Fusion and quasifission with the dinuclear system model Second lecture.
Isotope dependence of the superheavy nucleus formation cross section LIU Zu-hua( 刘祖华) (China Institute of Atomic Energy)
POPULATION OF GROUND-STATE ROTATIONAL BANDS OF SUPERHEAVY NUCLEI PRODUCED IN COMPLETE FUSION REACTIONS A.S. Zubov, V.V. Sargsyan, G.G. Adamian, N.V.Antonenko.
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research SHE in JINR 109 th Session of the JINR Scientific Council Feb.17-18,
Recent improvements in the GSI fission model
Synthesis of the heaviest elements at RIKEN Kosuke Morita Superheavy Element Laboratory RIKEN Nishina Center 2009/1/201Periodic Table of D.I. Mendeleev.
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
激发能相关的能级密度参数和重核衰变性质 叶 巍 (东南大学物理系 南京 ). 内容 ◆ 问题背景 ◆ 理论模型 ◆ 计算结果和结论.
Quasifission reactions in heavy ion collisions at low energies A.K. Nasirov 1, 2 1 Joint Institute for Nuclear Research, Dubna, Russia 2 Institute.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Study on Sub-barrier Fusion Reactions and Synthesis of Superheavy Elements Based on Transport Theory Zhao-Qing Feng Institute of Modern Physics, CAS.
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
Workshop on The Future of Superheavy Element Research February , 2004 Gesellschaft f ü r Schwerionenforschung Darmstadt, Germany.
C. M. Folden III Cyclotron Institute, Texas A&M University NN2012, San Antonio, Texas May 31, 2012.
Observation of new neutron-deficient multinucleon transfer reactions
Heavy ion nuclear physics in JINR /present and future/ Yuri Oganessian FLNR JINR 28-th of Nucl. Phys. PAC meeting June 19-20, 2008, JINR, Dubna.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Knyazheva G.N. Flerov Laboratory of Nuclear Reactions Asymmetric quasifission in reactions with heavy ions TAN 11, Sochi, Russia.
Dynamical Model of Surrogate Reaction Y. Aritomo, S. Chiba, and K. Nishio Japan Atomic Energy Agency, Tokai, Japan 1. Introduction Surrogate reactions.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
Feng-Shou Zhang College of Nuclear Science and Technology Beijing Normal University, Beijing, China Collaborators: Long Zhu, Bao-An Bian, Hong-Yu Zhou,
2 nd SPES Workshop Probing the Island of Stability with SPES beams.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
Oct. 16 th, 2015, Yonsei. RAON 2 Far from Stability Line 3.
Study of Heavy-ion Induced Fission for Heavy Element Synthesis
HEAVY ELEMENT RESEARCH AT THE FLNR (DUBNA)
Fusion reactions with light stable and neutron-rich nuclei:
Study of SHE at the GSI – SHIP
Periodic Table of the Elements
采用热熔合方法合成超重核的理论研究 王楠 深圳大学 合作者: 赵恩广 (中科院 理论物理所) 周善贵 (中科院 理论物理所)
Sensitivity of reaction dynamics by analysis of kinetic energy spectra of emitted light particles and formation of evaporation residue nuclei.
Experiment SHIP: Fusion without “extrapush“
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
New Transuranium Isotopes in Multinucleon Transfer Reactions
Fission on the Neutron-Rich Side of the Valley of Stability
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Presentation transcript:

Possibility of Synthesizing Doubly Magic Superheavy Nucleus Y. Aritomo Department of Electric and Electronic Engineering, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, Japan RISP, Daejeon, Korea 16 th February (2016)

Way to synthesize new SHE 1) Ti, Cr, Fe etc. beams  48 Ca beams Actinide target cf. Pb, Bi targets Z=113 RIKEN 2) Secondary beams 3) Transfer reaction U+Th, U+Cm

1. Introduction 2. Model Dynamical model with Langevin equation Two center shell model 3. Results Synthesis of Superheavy Elements (land at the center of Island of Stability) 4. Summary Contains

LvFl May 2012 IUPAC f lerovium livermorium Periodic Table Менделеев( ) 1869 Super Heavy Elements  less stable Jan IUPAC

1. Introduction Nuclear Chart and Stability of Nuclei

Our Interest ・ Next magic number  Z=82, N=126 ・ Verification of ‘Island of Stability’ ( predicted by macroscopic-microscopic model in 1960’s ) ・ Synthesis of new elements 1. Introduction N Z Nuclear Chart Stability of nuclei

G. Flerov and K. Petrjzak Leningrad 1940 N. Bohr and J.A. Wheeler (1939) Mayer and Jensen (1949) Magic numbers Models: Macro-microscopic Hartry-Fock-Bogolubov Relativistic-mean-field

Quadrupole deformation β 2 LD Potential energy / MeV LD + shell 超重元素領域における核分裂障壁 Shell correction energies in the macroscopic-microscopic model N Z

fissility parameter Spherical nucleus Surface energy Coulomb energy 超重元素領域の原子核の安定性 Ys.Ts. Oganessian, Yu.A. Lazarev Treatise on Heavy-Ion Science vol.4 (1985) Z= LDM 10

Experimental setup for synthesis of SHE LabCountryCityAcceleratorSeparator FLNRRussiaDubnaU400 U400M DGFRS VASSILISSA GSIGermanyDarmstadtUNILACSHIP TASCA RIKENJapanWakoRILACGALIS LBNLUSABerkeley88-inch CyclotronBGS GANILFranceCaenSPIRAL2's LINAC accelerator S3 (Super Separator Spectrometer) Gas-filled separator Electromagnetic separator

G.N. Flerov ( ) Yu.Ts. Oganessian (1933-) P. Armbruster (1931-) S. Hofmann (1943-) G. Muenzenberg (1940-) K. Morita (1957-)

Fusion process in Superheavy mass region FUSION TRANSFER, QUASI-FISSION Nuclear Molecule Compound Nucleus (CN) Evaporation Residue (ER) FUSION-FISSION Fission Fragments 90~99%

„Cold“ and „Hot“ Fusion Reactions Cold Fusion → doubly magic target nuclei: Pb, Bi; E*(CN) = 10 – 20 MeV; evaporation of 1 – 2 neutrons; up to now successful for Z ≤ 113 Hot Fusion → actinide targets (U, Cm, …) and 48 Ca projectiles; E*(CN) = 30 – 40 MeV; evaporation of 3 – 4 neutrons; up to now successful for Z ≤ 118 reaction Q-value large reaction Q-value small

Y. Aritomo et al. PRC 59, 796 (1999) Cold fusion Hot fusion formation survival formation survival

Cold fusion reaction Hot fusion reaction Ds 62 Ni Pb  n (GSI) 111 Rg 64 Ni Bi  n (GSI) Cn 70 Zn Pb  n (GSI)  named in Feb Fl 48 Ca Pu  n (FLNR)  named in May Lv 48 Ca Cm  n (FLNR)  named in May Ca Cf  n (FLNR) Ca Am  n  α (FLNR) Zn Bi  n (RIKEN) Ca Bk  294, n (FLNR) Synthesis of New Elements Reports of new elements Ti Bk  296, n (GSI- TASCA) 20

Cold fusion reaction Hot fusion reaction RIKEN 20

Experimental data Evaporation Residue Cross Section

Yu. Ts. Oganessian

Way to synthesize new SHE 1) Ti, Cr, Fe etc. beams  48 Ca beams 2) Secondary beams 3) Transfer reaction U+Th, U+Cm

Cold fusion reaction Hot fusion reaction RIKEN 20

G.N. Flerov ( ) “ On the way to Super-elements” 1986 Mir publishers Moscow 48 Ca Pu  n 48 Ca Cm  n 60 Ni U  Kr Th  Kr Pb  U U   166 Yb n 136 Xe U   Ge + 4n Yu. Ts. Oganessian (1933 -)

Experimental data 蒸発残留核断面積

合成のしやすさ(し難さ) 208 Pb, 209 Bi 標的+重イオン 反応 原子番号 1b1b 1nb 10nb 100nb 100pb 10pb 1pb 0.1pb 理研 1 週間に 1 個 10 週間に 1 個 1 日に 1 個 1 日に 7 個 1 時間に 3 個 2 年に 1 個 2 分に 1 個 1 分に 5 個 1 秒に 1 個 2012/12/2524 九大 森田浩介氏による

Cold fusion reaction Hot fusion reaction RIKEN 20

Formation probability Survival probability Reaction time t < s < t < s ~ < t s Quasi-fission 90~99 % Fusion-fission TℓTℓ 1 st stage 2 nd stage 3 rd stage Touching probability

V.I. Zagrebaev, et al. Phy. Rev. C. 65. (2001)

Fission width Bohr and Wheeler (1939) Statistical model (transition state method) initial state and final state Fission width ~

Nuclear shape is described by Two center parametrozation

Goal of reaction theory Prediction of evaporation residue cross section of superheavy elements Proposal for optimum combination and incident energy Purpose of the dynamical calculation 1. mass and TKE distribution of fission fragments 2. fusion cross section 3. evaporation residue cross section 4. possibility of synthesis of superheavy elements 5. clarify fusion-fission dynamics Study for nuclear reaction theory

計算処方の概観 Time-evolution of nuclear shape in fusion-fission process 1. Potential energy surface 2. Trajectory  described by equations Model Outlook of calculation methods c.m. distance z Mass asymmetry α

Overview of Dynamical Process in reaction 36 S+ 238 U 10

two-center parametrization (Maruhn and Greiner, Z. Phys. 251(1972) 431) Nuclear shape (δ1=δ2)

Potential Energy mass asymmetry c.m. distance z δ=0

Fission barrier recovers at low excitation energy

q i : deformation coordinate ( nuclear shape ) two-center parametrization (Maruhn and Greiner, Z. Phys. 251(1972) 431) p i : momentum m ij : Hydrodynamical mass ( inertia mass ) γ ij : Wall and Window (one-body) dissipation ( friction ) 多次元ランジュバン方程式 Multi-dimensional Langevin Equation Newton equation Friction Random force dissipation fluctuation ordinary differential equation Einstein relation Fluctuation-dissipation theorem

236U E*=20 MeV Process Without fluctuation : Newton EqWith fluctuation : Langevin Eq. 6

Itkis et al. Cal. Calculation results 48 Ca Pu Calculation

Way to synthesize new SHE 1) Ti, Cr, Fe etc. beams  48 Ca beams 2) Secondary beams 3) Transfer reaction U+Th, U+Cm

Yu. Ts. Oganessian and K. Morita 190 A=304 Possibility of synthesizing Model Calculation Introduction Cn 278 Rg 279 Rg 280 Rg 281 Rg 282 Rg 274 Mt 275 Mt 276 Mt 278 Mt 270 Bh 271 Bh 272 Bh 274 Bh 266 Db 267 Db 268 Db 270 Db Lv 291 Lv 286 Fl 287 Fl 282 Cn 275 Hs 267 Rf CN R g 270 Mt 266 B h 262 D b     Rg 270 Mt 266 Bh 262 Db 258 Lr  254 Md  254 Fm  250 Cf Z=114 N=184

Y. Aritomo et al. PRC 59, 796 (1999) Langevin eq. Statistical model

Trajectory calculation Two-center parametrization Capture Fusion Survival 3-dim Langevin Statistical model To estimate survival probability Dynamical model

W ; survival probability One-dimensional Smoluchowski equation T(t) : temperature  statistical code SIMDEC Cooling curve statistical code q ; separation distance We assume the particle emissions are limited to neutron emission in the neutron-rich heavy nuclei. probability distribution

Fission barrier recovers at low excitation energy

Smoluchowski equation

Time dependence of fission barrier height A=298

Yu. Ts. Oganessian and K. Morita 190 A=304 Possibility of synthesizing Model Calculation Introduction Cn 278 Rg 279 Rg 280 Rg 281 Rg 282 Rg 274 Mt 275 Mt 276 Mt 278 Mt 270 Bh 271 Bh 272 Bh 274 Bh 266 Db 267 Db 268 Db 270 Db Lv 291 Lv 286 Fl 287 Fl 282 Cn 275 Hs 267 Rf CN R g 270 Mt 266 B h 262 D b     Rg 270 Mt 266 Bh 262 Db 258 Lr  254 Md  254 Fm  250 Cf Z=114 N=184

Neutron Separation energy 3. Survival process Neutrons Easily evaporate

Neutron Separation energy 3. Survival process Rapid cooling n

3. Survival process Approaching to the closed shell n

Neutron Separation energy 3. Survival process Rapid cooling Approaching to the closed shell

A=304 B f (MeV) Time dependence of fission barrier height

Smoluchowski equation

中性子放出エネルギー 中性子過剰核を使った実験的研究 Neutron rich beam --- J-PARC

Summary 1. The possibility of synthesizing a doubly magic superheavy nucleus, , was investigated on the basis of fluctuation dissipation dynamics. 2. Owing to the neutron emissions, we must generate more neutron-rich compound nuclei. 3. To calculate the survival probability, we employ the dynamical model has two advantages to achieving a high survival probability. 1 ) small neutron separation energy and rapid cooling 2 ) the neutron number of the nucleus approaches that of the double closed shell  obtain a large fission barrier 5. The systematical investigation compared with the statistical model and dynamical one is necessary. We must apply the dynamical model for known systems.