Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Monte-Carlo Simulation of Thermal Radiation from GRB Jets Sanshiro Shibata (Konan Univ.) Collaborator: Nozomu Tominaga (Konan Univ., IPMU)
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Are Stellar Eruptions a Common Trait of SNe IIn? Baltimore, MD 06/29/11 Ori Fox NPP Fellow NASA Goddard Based on arXiv:
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Y. Matsuo A), M. Hashimoto A), M. Ono A), S. Nagataki B), K. Kotake C), S. Yamada D), K. Yamashita E) Long Time Evolutionary Simulations in Supernova until.
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Unburned carbon in SNe Ia as viewed from (non-)formation of C grains Takaya Nozawa (IPMU, University of Tokyo) 2011/04/13 Condensation efficiency of carbon.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
NAOJ, Division of theoretical astronomy
Dust Formation and Survival in Supernova Ejecta
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga (Konan Univ.), K. Maeda (IPMU), H. Umeda (Univ. of Tokyo), K. Nomoto (IPMU/Univ. of Tokyo)

1-1. Introduction (1) SNe are the major sources of interstellar dust? ・ mass estimate of dust condensing in the ejecta ➔ M dust < M sun from observations of SNe (e.g., Miekle et al. 2007; Kotak et al. 2009) ➔ M dust = M sun from theoretical studies (Todini & Ferrara 2001; Nozawa et al. 2003) It is essential to reveal the composition, size, and mass of dust by comparing theoretical model with observation - a limited number of observations of dust forming-SNe - a lack of sophisticated radiative transport model

1-2. Introduction (2) ・ Comparison of models with IR observations of SNRs - erosion by sputtering and stochastic heating - envelope-poor SNe are more favorable (For type II-P SNe, the reverse shock collides with the He core after a few thousand years) ・ Dust formation and evolution in SN with no envelope - ~30 % of CCSNe explode as SNe Ib/c and SN IIb (Prieto et al. 2009; Smartt et al. 2008; Boissier & Prantzos 2009) ・ investigate the composition, size, and mass of dust formed in hydrogen-deficient SNe ・ apply the results to the IR observations of young SNR such as Cas A

2-1. Calculation of dust formation ○ nucleation and grain growth theory (Kozasa & Hasegawa 1987) ・ key species: a gas species with the least collision frequency among reactants ・ sticking probability; α=1 ・ T dust = T gas (dust temperature is the same as that of gas) steady-state nucleation rate grain growth rate

○ 1-D models of SNe ➔ ☓ clumpy structure and asymmetry explosion ○ formation of molecules (CO and SiO) - complete - taking account of formation and destruction (formation efficiency of molcules is ) ○ time evolution of gas temperature - following a light curve calculation - adopting adiabatic approximation ○ mixing of elements within the He-core - unmixed case (original onion-like composition) - uniformly mixed case 2-2. Model of Dust formation calculation

2-3. Model of Type IIb SN ○ SN IIb model (SN1993J-like model) - M eje = 2.94 M sun M H-env = 0.08 M sun M star = 18 M sun - E 51 = 1 - M( 56 Ni) = 0.07 M sun

2-4. Composition and mass of dust formed condensation time Mass of dust formed ・ different species of dust can condense in different layers ・ condensation time: days Total mass of dust formed : M sun in SN IIb M sun in SN II-P

2-5. Radius of dust formed in the ejecta average radius Grain radius ➔ > 0.01 μm for SN IIP ➔ < 0.01 μm for SN IIb Dust grains formed in H- deficient SNe are small SN IIb SN II-P SN Ib Nozawa et al. (2008)

○ time evolution of shock wave - numerically (Nozawa et al. 2007) - semi-analytically (Bianchi & Schneider 2007) ○ deceleration of dust due to the gas drag - inversely proportional to grain size and bulk density ○ erosion of dust by sputtering - da / dt ~ n H μm yr -1 cm 3 for T > 10 6 K ○ ambient gas density - n H = 0.1, 1.0 and 10.0 cm -3 ・ contribution from ISM dust? ・ unshocked ejecta-dust? 3-1. Dust destruction calculation

3-2. Calculation of dust evolution in SNRs ○ Model of calculations (Nozawa et al. 2006, 2007) ・ ejecta model - hydrodynamic model for dust formation calculation ・ CSM gas density - n H = 1.0 and 10.0 cm -3 - n H (r) ∝ M / (4πr 2 v w ) g/cm -3 (M = 2x10 -5 M sun /yr) ・ treating dust as a test particle - erosion by sputtering - deceleration by gas drag - collsional heating

3-3. Evolution of dust in Type IIb SNR n=1.0 /cc n=10.0 /cc

n=1.0 /ccn=10.0 /cc 3-4. Time evolution of dust mass M dust ~ M sun at 10 5 yr M dust = 0 M sun at 10 5 yr Newly formed dust grains in the ejecta are completely destroyed in the shocked gas within the SNR Core-collapse SNe with low-mass outer envelope cannot be main sources of dust

3-5. Time evolution of IR thermal emission (1) Data: Hines et al. (2004) red: with SH green: without SH n=1.0 /cc

3-6. Time evolution of IR thermal emission (2) Data: Hines et al. (2004) red: with SH green: without SH n=10.0 /cc

3-7. Contribution from unshocked dust ρ x 4 dM/dt = 2x10 -5 M sun /yr M d,warm ~ M sun, M d,cool ~ 0.08 M sun dM/dt = 8x10 -5 Msun/yr

1) The radius of dust formed in the ejecta of Type IIb SN is quite small ( < 0.01 μm) because of low ejecta density 2) Small dust grains formed in Type IIb SN cannot survive destruction in the shocked gas within the SNR 3) Model of dust destruction and heating in Type IIb SNR to reproduce the observed SED of Cas A is M d,warm = M sun, M d,cool = M sun dM/dt = 6-8x10 -5 Msun/yr 4) IR SED reflects the destruction and stochastic heating ➔ properties (size and composition) of dust ➔ density structure of circumstellar medium Summary