그림 불활성가스의 전리 충돌 단면적 가스종류 He Ne Ar Kr Xe

Slides:



Advertisements
Similar presentations
Introduction to the Ionosphere
Advertisements

Dipartimento di Chimica, Università di Bari, Italy
ASTR Spring 2008 Joel E. Tohline, Alumni Professor 247 Nicholson Hall [Slides from Lecture20]
Lecture 6 nitrogen and ozone photochemistry Regions of Light Absorption of Solar Radiation.
Heating and Cooling 10 March 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
427 PHC.  Atomic emission spectroscopy (AES) is based upon emission of electromagnetic radiation by atoms.
MODELING OF H 2 PRODUCTION IN Ar/NH 3 MICRODISCHARGES Ramesh A. Arakoni a), Ananth N. Bhoj b), and Mark J. Kushner c) a) Dept. Aerospace Engr, University.
Conceptual Model of the Earth’s Global Electric Field.
Prof. Reinisch, EEAS / Simple Collision Parameters (1) There are many different types of collisions taking place in a gas. They can be grouped.
Chemical kinetics Lecture IV Jenny Frodelius & Jonas Lauridsen.
Electronegative Plasmas Basic Atomic Processes Basic Physics Aspects Eva Stoffels, Eindhoven University of Technology.
Surface and volume production of negative ions in a low-pressure plasma E. Stoffels, W.W. Stoffels, V.M. Kroutilina*, H.-E. Wagner* and J. Meichsner*,
Photochemistry Lecture 1 Electronic excitation of atoms and molecules.
Lecture 11.0 Etching. Etching Patterned –Material Selectivity is Important!! Un-patterned.
Atomic Emission Spectroscopy
Electron interactions with CO 2 Bob Merlino Department of Physics and Astronomy The University of Iowa Iowa City, IA U. S. Department of Energy National.
TRIGGERING EXCIMER LASERS BY PHOTOIONIZATION FROM A CORONA DISCHARGE* Zhongmin Xiong and Mark J. Kushner University of Michigan Ann Arbor, MI USA.
Measuring DR cross sections Absolute recombination rate coefficients of tungsten ions from storage-ring experiments Stefan.
SCATTERING OF RADIATION Scattering depends completely on properties of incident radiation field, e.g intensity, frequency distribution (thermal emission.
Collision rate =  coll -1 = n e  coll v ~ (k B T/m H ) 1/2 n e  coll ~ 9 x n e T 1/2 s -1 collisions of electron against atoms Spontaneous emission.
ELECTRON SPECTROSCOPY AND MASS SPECTROMETRIC STUDY OF PENNING IONIZATION OF MOLECULES F. Vecchiocattivi Dipartimento d’Ingegneria Civile ed Ambientale.
NLTE simulations with CRASH code and related issues Fall 2011 Review Igor Sokolov [with Michel Busquet and Marcel Klapisch (ARTEP)]
D. Tskhakaya ADAC meeting, Cadarache /16 Molecular Data in Tokamak edge Modelling D. Tskhakaya Association EURATOM-ÖAW, University of Innsbruck,
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
Yiting Zhangb, Mark Denninga, Randall S. Urdahla and Mark J. Kushnerb
1 CHAPTER 7 Chemical Bonding 1. Ionic Bonding 2. Covalent Bonding 3. Lewis Dot Formulas of Atoms 4. Lewis Formulas for Molecules & Polyatomic Ions 5. The.
Why plasma processing? (1) UCLA Accurate etching of fine features.
Department of Experimental Physics, Comenius University Bratislava, Slovakia Formation of positive ions by electron impact: Temperature effects Š. Matejčík.
1 The Octet Rule Chapter 3 Section 3. 2 Valence electrons - electrons in the outermost energy level Valence electrons are the most important because they.
Plasma diagnostics using spectroscopic techniques
Internal partition function calculated with where N is the particle density (cm 3 ) Influence of Electronically Excited States on Thermodynamic Properties.
Plasma Physics & Engineering Lecture 7. Electronically Excited Molecules, Metastable Molecules. Properties of excited molecules & their contribution into.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Ionization Detectors Basic operation
2nd RD51 Collaboration Meeting, Paris, October PENNING TRANSFERS Ozkan SAHIN Uludag University Physics Department Bursa -Turkey 2nd RD51 Collaboration.
Lecture 3: Atomic Processes in Plasmas Recall:  Individual atomic properties (intrinsic)  Plasma processes (extrinsic) Electron-Ion processes: spectral.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
Max-Planck-Institut für Plasmaphysik CRP on ‘Atomic and Molecular Data for Plasma Modelling’, IAEA, Vienna26-28 September 2005 Compilation and Extension.
Electron-impact rotational excitation of H 3 + : relevance for thermalization and dissociation Alexandre Faure* Laurent Wiesenfeld* & Jonathan Tennyson.
Section 12.1 Characteristics of Chemical Bonds 1.To understand the nature of bonds and their relationship to electronegativity 2.To understand bond polarity.
To join as much as possible of the brazilian scientific and technological production in atomic, molecular and plasma physics that may be of interest to.
ESS 200C Lecture 13 The Earth’s Ionosphere
DRY ETCHING OF Si 3 N 4 USING REMOTE PLASMA SOURCES SUSTAINED IN NF 3 MIXTURES* Shuo Huang and Mark J. Kushner Department of Electrical Engineering and.
Unit Two Review Periodic Table, e- configuration, Noble Gas configuration, p.e.n., orbital-filling diagrams, Lewis dot diagrams, periods and groups/families.
Collisional-Radiative Model For Atomic Hydrogen Plasma L. D. Pietanza, G. Colonna, M. Capitelli Department of Chemistry, University of Bari, Italy IMIP-CNR,
PROPERTIES OF UNIPOLAR DC-PULSED MICROPLASMA ARRAYS AT INTERMEDIATE PRESSURES* Peng Tian a), Chenhui Qu a) and Mark J. Kushner a) a) University of Michigan,
Özkan ŞAHİN & Tadeusz KOWALSKI Uludağ University, Physics Department, Bursa – TURKEY Faculty of Physics and Applied Computer Science, AGH University of.
Özkan ŞAHİN & Tadeusz KOWALSKI Uludağ University, Physics Department, Bursa – TURKEY Faculty of Physics and Applied Computer Science, AGH University of.
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
1 Equation of Transfer (Mihalas Chapter 2) Interaction of Radiation & Matter Transfer Equation Formal Solution Eddington-Barbier Relation: Limb Darkening.
Writing Electron Configurations Using Core Notation Part 1 Introducing Core Notations.
Penning transfers: survey of available data, life-time of excited states, pressure dependence Ozkan SAHIN Uludag University Physics Department Bursa -TURKEY.
Computational Astrophysics: Magnetic Fields and Charged Particle Dynamics 8-dec-2008.
Electrochemistry The study of chemical reactions that produce electrical current or are driven to occur by applying an electrical current. Chemical potential.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
1)  n  ←  m  fast pump excitation ll mm  k k nn The general view was that it would be impossible or at least very difficult to achieve.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
1)  n  ←  m  fast pump excitation ll mm  k k nn The general view was that it would be impossible or at least very difficult to achieve.
Planetary Ionospheres
Improvements to magboltz and degrad data bases
ENERGY LOADING AND DECAY OF N2 VIBRATION
FEBIAD ion source development efficiency improvement
Electrochemistry The study of chemical reactions that produce electrical current or are driven to occur by applying an electrical current. galvanic cell.
7.12 – NOTES Bond and Molecular Polarity Using Models
DIAGNOSTICS OF ATMOSPHERIC PRESSURE PLASMAS UTILIZING ULTRAFAST LASERS
Noble gases TRENDS.
7.8 – NOTES Molecular Polarity
Equation of Transfer (Hubeny & Mihalas Chapter 11)
THE CARBON DIOXIDE LASER
Presentation transcript:

그림 3.1.2 불활성가스의 전리 충돌 단면적 가스종류 He Ne Ar Kr Xe 전리전압 (V) 24.6 21.57 15.76 14.0 12.13 표 3.1.1 불활성가스의 전리 전압 Plasma laboratory, SNU

그림 3.1.3 He 원자의 에너지 레벨 : Singlet(S=0) 과 Electronic Configuration of Xe 그림 3.1.3 He 원자의 에너지 레벨 : Singlet(S=0) 과 Triplet(S=1) 으로 나누어 있다. Plasma laboratory, SNU

selection rule for dipole radiation 천이가 금지된 레벨 : Metastable ( 긴수명 ) Plasma laboratory, SNU

표 3.1.2 불활성 가스의 Resonance level 과 Metastable level 의 에너지와 수명 Plasma laboratory, SNU

Penning Mixture Plasma laboratory, SNU

그림 3.1.4 Ar/Ne 혼합가스비에 따른 방전 개시 전 압의 감소 Plasma laboratory, SNU

• Excitation (rotational, vibrational, electronic) : 충돌 반응의 종류 (a) 전자의 충돌에 의한 반응 • Excitation (rotational, vibrational, electronic) : e + M  M* + e • Dissociative attachment : e + M2  M- + M+ + e • Dissociation : e + M2  2M + e • Ionization : e + M  M+ + 2e • Dissociative ionization : e + M2  M+ + M + 2e Plasma laboratory, SNU

(b) 무거운 입자(heavy particles) 간의 비탄성 충돌에 의한 반응 • Penning dissociation : M* + A2  2A + M • Penning ionization : M* + A  A+ + M + e • Charge transfer : M+ + A  A+ + M • Collisional detachment : M + A-  A + M + e • Associative detachment : A- + A  A2 + e Plasma laboratory, SNU

• Ion-ion recombination : M+ + A2+  A2 + M • Electron-ion recombination : e + A+  A e + A+ + M  A + M • Atom recombination : 2A + M  A2 + M • Atom abstraction : A + BC  AB + C • Atom addition : A + BC + M  ABC + M Plasma laboratory, SNU

(c) 혼성(Heterogeneous) 반응 ( S : 플라즈마와 접하고 있는 고체 표면 ) • Atom recombination : S - A + A  S + A2 • Metastable de-excitation : S + M*  S + M + h • Atom abstraction : S - B + A  S + AB • Sputtering : S - B + M+  S+ + B + M Plasma laboratory, SNU

Plasma laboratory, SNU

Electron Energy Balance (탄성충돌만 고려) Mean Electron Energy Plasma laboratory, SNU

A) Electron Impact Ionization 플라즈마의 생성과 소멸 1. Ionization A) Electron Impact Ionization 여기서 Plasma laboratory, SNU

I : 전리전압 Plasma laboratory, SNU

Townsend’s Ionization Coefficient Plasma laboratory, SNU

gas h=I(eV) (Å) (10-18 cm2 ) He 24.6 504 7.4 Ne 21.6 575 7.8 B) Photoionization gas h=I(eV) (Å) (10-18 cm2 ) He 24.6 504 7.4 Ne 21.6 575 7.8 Ar 15.8 787 35 Plasma laboratory, SNU

Photoionization Cross Section Plasma laboratory, SNU

C) Ionization by Excited Atoms Ionization by Atoms or Molecules requires Ionization by Resonance Excited Atom Ionization by Metastable Atom (Penning Effect) Plasma laboratory, SNU

D) Associative Ionization A + A*  A2+ + e Plasma laboratory, SNU

A) Electron-ion recombination 2. Bulk Recombination A) Electron-ion recombination Plasma laboratory, SNU

B) Dissociative Recombination A2+ + e  A + A* Dissociative Recombination Coeff. Plasma laboratory, SNU

Conversion reaction 가스 He Ne Ar Kr Xe 0.63-0.15 0.42-0.79 1.46-3.9 1.9-2.7 3.6 Plasma laboratory, SNU

For Plasma laboratory, SNU

C) Radiative Recombination D) Ion-ion Recombination E) Attachment and Detachment Important for Electronegative gas (O, O2 ,Cl, SF6) Plasma laboratory, SNU

Charged Particle Density where flux D : Diffusion Coeff. 3. Diffusion Loss Charged Particle Density where flux D : Diffusion Coeff. Mean electron lifetime where L1, L2, L3 : 3변의 길이 Plasma laboratory, SNU

: Characteristic temperature Characteristic Temp of Ne, Ar Plasma laboratory, SNU

Ambipolar Diffusion Since and Plasma laboratory, SNU

3.2 기체 방전 특성 3.2.1 기체 방전의 전류대전압 특성 곡선 그림 3.2.1 기체 방전의 전류 - 전압 특성곡선 3.2 기체 방전 특성 3.2.1 기체 방전의 전류대전압 특성 곡선 그림 3.2.1 기체 방전의 전류 - 전압 특성곡선 Plasma laboratory, SNU

 non-self sustained discharge (no current flows when tube is blocked) * Prebreakdown Stage 특징 :  Small Current ( A)  non-self sustained discharge (no current flows when tube is blocked)  균일저장  발광이 거의 없음. Plasma laboratory, SNU

가) Townsend Discharge 특성 (  - process ) Plasma laboratory, SNU

표 3.2.1 불활성 가스의 Ionization coefficient와 적용범위 Plasma laboratory, SNU

나) Townsend 의 2차 계수 (  - process )  Plasma laboratory, SNU

 ,  로 부터 Plasma laboratory, SNU

전극간격에 따른 Townsend 전류의 변화 (균일전장) Plasma laboratory, SNU

Breakdown 조건 방전 개시 전압은 Plasma laboratory, SNU

Plasma laboratory, SNU

Breakdown 조건 방전 개시 전압은 Plasma laboratory, SNU