Recent progress of RIKEN 28GHz SC-ECRIS for RIBF T. Nakagawa (RIKEN) 1.Introduction RIKEN Radio isotope factory project 2.RIKEN 28GHz SC-ECRIS Structure(Sc-coils,

Slides:



Advertisements
Similar presentations
Superconducting Ion Source Development in Berkeley
Advertisements

W. Udo Schröder, 2004 Instrumentation 1. W. Udo Schröder, 2004 Instrumentation 2 Probes for Nuclear Processes To “see” an object, the wavelength of the.
THE SMALL ISOCHRONOUS RING PROJECT AT MICHIGAN STATE UNIVERSITY J. Alberto Rodriguez.
Ion Injector Design Andrew Seltzman.
HIAT 2009, 9 th June, Venice 1 DESIGN STUDY OF MEDICAL CYCLOTRON SCENT300 Mario Maggiore on behalf of R&D Accelerator team Laboratori Nazionali del Sud.
Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL Olli Tarvainen 11th International Conference on Heavy Ion Accelerator.
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Carbon Injector for FFAG
HYBRIS: R. Keller Page 1 A Hybrid Ion Source Concept for a Proton Driver Front-End R. Keller, P. Luft, M. Regis, J. Wallig M. Monroy, A. Ratti, and.
FFAG-ERIT Accelerator (NEDO project) 17/04/07 Kota Okabe (Fukui Univ.) for FFAG-DDS group.
December 2007ESF-Workshop, Athens, Greece University of Jyväskylä, Department of Physics ECR ion source for the highly charged, intensive ion beams H.
New Progress of High Current Gasdynamic Ion Source
P. Spiller, SIS18upgrade, Peter Spiller GSI, Darmstadt Kick off Meeting - EU Construction DIRAC Phase SIS18 upgrade.
JINR PAC, Dubna, G. Gulbekian Status of the DRIBs III Project cyclotron DC280 new experimental hall (SHE factory) cyclotron U400R reconstruction.
Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University.
Title of the slide Operation and commissioning of IFMIF LIPAc Injector and J-M Ayala A), B. Bolzon B), P. Cara C), N. Chauvin B), D. Chel B), D. Gex C),
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
2007/2/111 A Report to the Advisory Committee of CNS The Accelerator Group Outline Progress in April – December 2006 Schedule in Jan – March 2008.
J-PARC Accelerators Masahito Tomizawa KEK Acc. Lab. Outline, Status, Schedule of J-PARC accelerator MR Beam Power Upgrade.
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008.
ICIS2015,Aug , 2015, New York, USA Further improvement of RIKEN 28GHz SC-ECRIS for production of highly charged U ion beam T. Nakagawa (RIKEN, Nishina.
Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans H. Okuno, et. al. (RIKEN Nishina Center) and P. Ostroumov (ANL) Upgrade Injector Low.
Study of Compact Medical FFAG Accelerators - Radial Sector Type - T. Misu, Y. Iwata, A. Sugiura, S. Hojo, N. Miyahara, M. Kanazawa, T. Murakami, and S.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
ICIS2015 in NY Y.HIGURASHI Y. Higurashi (RIKEN Nishina center) 1.Introduction RIKEN RIBF and RIKEN 28GHz SC-ECRIS 2.Emittance measurements 1.4D.
Mats Lindroos Future R&D: beta-beam Mats Lindroos.
Results of the argon beam test at Linac3 D. Küchler BE/ABP/HSL Including feedback from R. Scrivens and M. Bodendorfer.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Giovanni Ciavola, JRA-07 ISIBHI JRA-07 Ion Sources for Intense Beams of Heavy Ions (ISIBHI) EURONS PCC Meeting, Groningen, Holland, December 2006.
The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M.
WU2 - Proton Source Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
FLS2010 Workshop, Stanford, March 1-5, 2010 Florian Loehl (Cornell University) Commissioning of the High Current ERL Injector at Cornell Florian Loehl.
Multi-bunch acceleration in NS-FFAG Takeichiro Yokoi (Oxford University)
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Concept Preliminary Estimations A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u) Output energy (MeV/u)2.5(3.5) Beam.
Cyclone 70 IBA Radiopharma’s high energy, high current cyclotron.
Studies on 2.45 GHz microwave ion sources Abhishek Nag IISER, KOLKATA Presented By: G.O. Rodrigues IUAC, New Delhi Supervised By:
Operation of the RF System for heavy ion accelerators in RIKEN RI Beam Factory K. Suda, N. Sakamoto, K. Yamada, H. Okuno, Y. Higurashi, O. Kamigaito, M.
THE MAFF IH-RFQ TEST STAND AT THE IAP FRANKFURT A. Bechtold, J. Fischbach, D. Habs, O. Kester, M. Pasini, U. Ratzinger, J. Rehberg, M. Reichwein, A. Schempp,
CHARACTERIZATION OF MICROWAVE DISCHARGE ION SOURCE FOR HIGH PROTON BEAM PRODUCTION IN CW AND PULSED MODE Rosalba Miracoli Consegna del premio “Francesco.
Korea Atomic Energy Research Institute Byung-Hoon Oh, Sang-Ryul In, Kwang-Won Lee, Chang Seog Seo*, Jung-Tae Jin, Dae-Sik Chang, Seong Ho Jeong, Chul-Kew.
The 12th Symposium on Accelerator Physics, Yuzhong, Gansu, China1 Study of Beam Properties at SECRAL and The Solenoid Pre-focusing LEBT Youjin.
Superconducting Magnet, SCRF and Cryogenics Activities at VECC *, Kolkata Shekhar Mishra Rakesh Bhandari *Department of Atomic Energy, Government of India.
0 Ion Beam Facilities at KOMAC Chan Young Lee on behalf of KOMAC Chan Young Lee on behalf of KOMAC ICABU2014, November 12~14,
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
Prototyping of Superconducting Magnets for RAON ECR IS S. J. Choi Institute for Basic Science S. J. Choi Institute for Basic Science.
Welcome to the RFQ Meeting
Development of a new compact 5.8 GHz ECR ion source at LPSC
Positron production rate vs incident electron beam energy for a tungsten target
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Study on Monatomic Fraction Improvement with Alumina Layer on Metal Electrode in Hydrogen Plasma Source Bong-Ki Jung, Kyung-Jae Chung, Jeong-Jeung Dang,
    Abstract ID : Thu-Af-Po4.01
DECRIS-PM ion source for DC-280 cyclotron
Improvement of beam current in KIRAMS-13 using upgrade of
Standaert Laurent UCL- Cyclotron Resource Centre
HIAF Electron Cooling System &
Machine studies during beam commissioning
Physics design on Injector-1 RFQ
Future R&D: beta-beam Mats Lindroos Mats Lindroos.
FFAG Accelerator Proton Driver for Neutrino Factory
Injector: What is needed to improve the beam quality?
Pulsed Ion Linac for EIC
November 14, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
November 7, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
Summary & Concluding remarks
Physics Design on Injector I
Multi-Ion Injector Linac Design – Progress Summary
He Zhang, David Douglas, Yuhong Zhang MEIC R&D Meeting, 09/04/2014
Presentation transcript:

Recent progress of RIKEN 28GHz SC-ECRIS for RIBF T. Nakagawa (RIKEN) 1.Introduction RIKEN Radio isotope factory project 2.RIKEN 28GHz SC-ECRIS Structure(Sc-coils, cryostat) 3.Recent results (uranium ion beam) Effect of Al chamber Biased disc effect(28GHz) operation for long term (>1month)(stability, emittance) first result with high temperature oven two frequencies heating(18+28GHz) 4.Summary 5.Next step RISP workshop, May19-21, 2013, Daejeon, Korea

18GHz ECRIS RILAC (RIken Linear ACcelerator) fRCfRC RRCRRC IRCIRC SRCSRC RIKEN RIBF 28GHz SC-ECRIS RILAC II(RIken Linear ACcelerator) RISP workshop, May19-21, 2013, Daejeon, Korea

New injector system ~0.6MeV/u 238 U 35+, 124 Xe MeV/u 238 U, 124 Xe Extraction voltage 22kV m/q <6.8 ( 238 U 35+, 124 Xe 19+ ) Extraction voltage 22kV m/q <6.8 ( 238 U 35+, 124 Xe 19+ ) New Injector (RILAC II) RISP workshop, May19-21, 2013, Daejeon, Korea

Recent progress of RIKEN 28GHz SC-ECRIS for RIBF T. Nakagawa (RIKEN) RISP workshop, May19-21, 2013, Daejeon, Korea 1.Introduction RIKEN Radio isotope factory project 2.RIKEN 28GHz SC-ECRIS Structure(Sc-coils, cryostat) 3.Recent results (uranium ion beam) Effect of Al chamber Biased disc effect(28GHz) operation for long term (>1month)(stability, emittance) first result with high temperature oven two frequencies heating(18+28GHz) 4.Summary 5.Next step

RIKEN 28GHz SC-ECRIS I) SC-coils II) Cryostat III) Plasma chamber IV) Gyrotron V) LEBT(Analyzing magnet, solenoid coil, FC, profile monitor, emittance monitor, beam slit) RISP workshop, May19-21, 2013, Daejeon, Korea

Magnetic fieldB inj ~4TB ext ~2TB r ~2T (High B mode)(plasma confinement) B min <1T (choose the optimum field gradient) ECR zone size as large as possible Chamber sizeDiameter 15cm (comparison between RIKEN 18 GHz and VENUS, SCRAL) Length50cm(Long confinement time) Microwave28GHz Power10kW ( 1kW/L)(High power density) ChamberMovable biased disc (matching between frequency and chamber size) Magnetic fieldB inj ~4TB ext ~2TB r ~2T (High B mode)(plasma confinement) B min <1T (choose the optimum field gradient) ECR zone size as large as possible Chamber sizeDiameter 15cm (comparison between RIKEN 18 GHz and VENUS, SCRAL) Length50cm(Long confinement time) Microwave28GHz Power10kW ( 1kW/L)(High power density) ChamberMovable biased disc (matching between frequency and chamber size) RISP workshop, May19-21, 2013, Daejeon, Korea

SC-coils I RISP workshop, May19-21, 2013, Daejeon, Korea T. Nakagawa et al, Rev. Sci. Instrum.81 (2010) 02A320. “Flat B min ” G. D. Alton and D. N. Smithe, Rev. Sci. Instrum. 65 (1994)775

Cryostat I GM refrig. 35W(45K), 6.3W(10K) GM. Refrig. 50W(43K), 1.0W(4.2K) )(GM-JT refrig.) CG310SC(SUMITOMO)(GM-JT refrig.) Cooling capacity Electric power consump.5.1/6.1kW(50/60Hz) Electric powerAC200V 3 phase Weight~220kgr Dimension700Wx520Dx1095H RISP workshop, May19-21, 2013, Daejeon, Korea

Cooling power (4.2K)2GM-JT ~7.3W 1GM ~1.0W Total ~8.3W Without plasmacooling power ~8W GM-JT cooling power Heat load Cryostat II RISP workshop, May19-21, 2013, Daejeon, Korea

Recent progress of RIKEN 28GHz SC-ECRIS for RIBF T. Nakagawa (RIKEN) RISP workshop, May19-21, 2013, Daejeon, Korea 1.Introduction RIKEN Radio isotope factory project 2.RIKEN 28GHz SC-ECRIS Structure(Sc-coils, cryostat) 3.Recent results (uranium ion beam) Effect of Al chamber Biased disc effect(28GHz) operation for long term (>1month)(stability, emittance) first result with high temperature oven two frequencies heating(18+28GHz) 4.Summary 5.Next step

Plasma chamber Extraction electrode Plasma electrode Sc-solenoide coils Biased disc U rod ECR zone U-rod Support rod(water cooled) Uranium ion beam production (sputtering method) B inj ~3.2T, B min ~0.6T, B ext ~1.9T B r ~1.9T B inj ~3.2T, B min ~0.6T, B ext ~1.9T B r ~1.9T RISP workshop, May19-21, 2013, Daejeon, Korea Advantage install large amount of U metal (>10gr)long term operation without break Disadvantage weak beam intensity ( compared to oven method)

RIKEN10GHz ECRIS RIKEN18GHz ECRIS T. Nakagawa et al, JJAP 35(1996)4077 T. Nakagawa, JJAP 30(1991)L930 Ar 10~16+ Al 2 O 3 coating or Al chamber RIKEN 28GHz SC-ECRIS Plasma chamber surface effect I RISP workshop, May19-21, 2013, Daejeon, Korea

Plasma chamber surface effect II RISP workshop, May19-21, 2013, Daejeon, Korea Al chamber ( lower beam intensity of O ions)

Ar 10~16+ Al 2 O 3 coating or Al chamber RIKEN 28GHz SC-ECRIS U 35+ ion beam RIKEN 28GHz SC-ECRIS U 35+ ion beam Plasma chamber surface effect III RISP workshop, May19-21, 2013, Daejeon, Korea

U 35+ V saturation ~-300V V saturation ~-80V Mean charge state ~36+ Mean charge state ~33+ Ion source was tuned to produce U 35+ ion beam Biased disc voltage effect RISP workshop, May19-21, 2013, Daejeon, Korea Bias disc voltage (kV)

RISP workshop, May19-21, 2013, Daejeon, Korea Disc position Gross feature

Fine structure L pp =1~2mm Biased disc position effect Disc position RISP workshop, May19-21, 2013, Daejeon, Korea Plasma chamber( multi-mode cavity) biased disc position? Microwave frequency, wave length Plasma chamber( multi-mode cavity) biased disc position? Microwave frequency, wave length

Sputtering voltage effect Beam intensity (U 35+ ) Sputtering current Charge distribution RISP workshop, May19-21, 2013, Daejeon, Korea

Charge distributions of highly charged U ions Tuned for 33+ production Tuned for 35+ production Tuned for 41+ production RISP workshop, May19-21, 2013, Daejeon, Korea

U 35+ ~180e  A U 42+ ~18e  A U 33+ ~230e  A RISP workshop, May19-21, 2013, Daejeon, Korea

VENUS 28GHz RIKEN SC-ECRIS 28GHz High energy x-ray (>several 100keV) plasmacryostat D. Leitner et al, RSI 79(79) Y. Higurashi et al, accepted for publication to RSI X-ray heat load I RISP workshop, May19-21, 2013, Daejeon, Korea

X-ray heat load III Lager zone size and steeper field gradient gives lower X-ray heat load X-ray heat load using Al-chamber is lower than that using SS-chamber RISP workshop, May19-21, 2013, Daejeon, Korea

Bo : axial magnetic field q: charge state M: mass Bo 18GHz ~1.2T 28GHz ~1.8T Cal: same q/M same emittance : higher Bolarger emittance 18GHz 28GHz Emittance measurements I RISP workshop, May19-21, 2013, Daejeon, Korea

Emittance measurements II RF power dependence Emittance during the beam time (for two months) Emittance was strongly dependent on the ion source condition (0.06 ~0.1  mm mrad) Emittance was strongly dependent on the ion source condition (0.06 ~0.1  mm mrad) RISP workshop, May19-21, 2013, Daejeon, Korea

Beam production for beam time (long term operation) U35+ beam production with sputtering method RF power~ 1.3kW average beam intensity ~86 e  A U rod~15gr consumption rate ~4 mg/h U35+ beam production with sputtering method RF power~ 1.3kW average beam intensity ~86 e  A U rod~15gr consumption rate ~4 mg/h RISP workshop, May19-21, 2013, Daejeon, Korea

Beam production for beam time (long term operation) Extraction current ~3.7mA ~3.4mA ~3mm shifted Beam profile Decrease of beam intensity from ring cyclotron Increase the temperature of electric deflector channel(EDC) of cyclotron EDC may be damaged by the intense beam) Decrease of beam intensity from ring cyclotron Increase the temperature of electric deflector channel(EDC) of cyclotron EDC may be damaged by the intense beam) Time RISP workshop, May19-21, 2013, Daejeon, Korea

High temperature oven 18GHz 28GHz Movable biased disc High temp oven Cooling water channel RISP workshop, May19-21, 2013, Daejeon, Korea

High temp. oven Current and temperature of the oven RISP workshop, May19-21, 2013, Daejeon, Korea Ansys simulation current 429A max. temp. 2205K

First result with high temp. oven 1. beam intensity of U 35+ ~170e  A Oven current 445A(~1900deg.) 2. We need 2days for production of the beam (1day for evacuation of the chamber, 1day for ion production) 3. Check the life time of the oven and consumption rate of the material(UO 2 ) Tuned for production of U 33+ ion RISP workshop, May19-21, 2013, Daejeon, Korea

28GHz +18GHz(500W) 28GHz 18GHz 28GHz Injection of Two frequencies(18+28GHz) RISP workshop, May19-21, 2013, Daejeon, Korea

Two frequencies Beam intensity as a function of B min Beam intensity as a RF power (18GHz) RISP workshop, May19-21, 2013, Daejeon, Korea

Recent progress of RIKEN 28GHz SC-ECRIS for RIBF T. Nakagawa (RIKEN) RISP workshop, May19-21, 2013, Daejeon, Korea 1.Introduction RIKEN Radio isotope factory project 2.RIKEN 28GHz SC-ECRIS Structure(Sc-coils, cryostat) 3.Recent results (uranium ion beam) Effect of Al chamber Biased disc effect(28GHz) operation for long term (>1month)(stability, emittance) first result with high temperature oven two frequencies heating(18+28GHz) 4.Summary 5.Next step

Summary 1.Beam intensity of highly charged U ion beams (Al chamber) Sputtering method +single RF (28GHz) at 3~4kW injection U 35+ ~180e  A U 33+ ~230e  A (U 33+, 34+ ~440e  A) U 42+ ~18e  A 2. The intense beam of U 35+ ion was produced for RIBF experiment longer than one month without break 3. The emittance of the U 35+ ion beam ~0.06  mm mrad (normalized 1 rms)( it is strongly dependent on the ion source condition 0.06~0.1  mm mrad) 4. High temperature oven successfully started to produce U 35+ ion beam with high temperature oven 5. Two frequencies we observed the enhancement of the highly charged U ion beam using two frequency(18+28GHz) 1.Beam intensity of highly charged U ion beams (Al chamber) Sputtering method +single RF (28GHz) at 3~4kW injection U 35+ ~180e  A U 33+ ~230e  A (U 33+, 34+ ~440e  A) U 42+ ~18e  A 2. The intense beam of U 35+ ion was produced for RIBF experiment longer than one month without break 3. The emittance of the U 35+ ion beam ~0.06  mm mrad (normalized 1 rms)( it is strongly dependent on the ion source condition 0.06~0.1  mm mrad) 4. High temperature oven successfully started to produce U 35+ ion beam with high temperature oven 5. Two frequencies we observed the enhancement of the highly charged U ion beam using two frequency(18+28GHz) RISP workshop, May19-21, 2013, Daejeon, Korea

1.Optimizing the magnetic field distribution 2.Two frequency heating (28GHz+18GHz) 3.Minimizing the consumption rate of the material sputtering method4mg/h Total consumption ~6g/2months consumption rate for oven method? 4.Stabilizing the beam intensity (minimizing the damage of the accelerator) ( emittance slit?) 5. Minimalizing the X-ray heat load 1.Optimizing the magnetic field distribution 2.Two frequency heating (28GHz+18GHz) 3.Minimizing the consumption rate of the material sputtering method4mg/h Total consumption ~6g/2months consumption rate for oven method? 4.Stabilizing the beam intensity (minimizing the damage of the accelerator) ( emittance slit?) 5. Minimalizing the X-ray heat load Next step RISP workshop, May19-21, 2013, Daejeon, Korea