1 Clip. 1. Differentiate among alpha and beta particles and gamma radiation. 2. Differentiate between fission and fusion. 3. Explain the process half-life.

Slides:



Advertisements
Similar presentations
Good Day! 4/11/2017 Discuss the uses of Radioactive Isotopes.
Advertisements

Radioactivity and Nuclear Reactions
Radioactivity and Nuclear Reactions
Nuclear Energy Radioactivity and Half-Life FissionFusion.
UNIT FOUR: Matter and its Changes  Chapter 12 Atoms and the Periodic Table  Chapter 13 Compounds  Chapter 14 Changes in Matter  Chapter 15 Chemical.
Radioactive Decay.
AMOLE Radioactivity. Science Park HS -- Honors Chemistry Early Pioneers in Radioactivity Roentgen: Discoverer of X- rays 1895 Becquerel: Discoverer of.
Chapter 9 pages And Chapter 18 pages
DIFFERENTIATE BETWEEN FISSION AND FUSION.
Radioactivity Chapter 21  Natural occurring phenomena.  In the nucleus of an atom there are protons and neutrons. Protons are positively charged so they.
Integrated Science Chapter 25 Notes
Radiation: Particles and Energy.
Nuclear Reactions.
Radioactivity Chapter 10 section 1 page
Nuclear Chemistry Chapter 10.
NUCLEAR CHEMISTRY 1 Isotopes-Review  Isotopes are atoms of the same element that have the same # of protons but different # of neutrons or mass. X Atomic.
Nuclear Chemistry Nuclear chemistry is the study of the structure of atomic nuclei and the changes they undergo.
Nuclear Chemistry. Radioactive Decay Spontaneous breakdown of an atom’s nucleus Breakdown results in a lighter nucleus Emits electromagnetic radiation.
Nuclear Reactions.
Anatomy of an Atom Parts of an Atom Nucleus (positive, mass of 1 amu) Neutron (, mass of 1 amu) Electron Cloud Electrons (, negligible mass)
Nuclear Chemistry Ch. 28. Nuclear Radiation 28-1.
What is it to be Radioactive? Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting radiation in the form of particles.
1. 1. Differentiate among alpha and beta particles and gamma radiation. 2. Differentiate between fission and fusion. 3. Explain the process half-life.
Radioactive Decay. What do you know about Radioactivity? 1.All atoms are made up of __________. 2.What are some radioactive isotopes? 3.Why do some isotopes/atoms.
1 Nuclear Changes Physical Science Chapter Radioactive decay  The spontaneous breaking down of a nucleus into a slightly lighter nucleus, accompanied.
1.3-1 Types of Radioactivity.  By the end of this section you will be able to: ◦ Observe nuclear changes and explain how they change an element. ◦ Express.
Radioactivity SPS3. Students will distinguish the characteristics and components of radioactivity. Differentiate among alpha and beta particles and gamma.
Radioactivity!.
Warm – Up: Think about the terms “radiation” and “radioactivity.” On a piece of paper, please write down at least 3 things you think of when you hear these.
Radiation. Atomic Anatomy Atoms –electrons (e-) –protons (p+) –neutrons (n)
Nuclear Energy. A. What does radioactive mean? 1. Radioactive materials have unstable nuclei, which go through changes by emitting particles or releasing.
Radioactivity.
Section 1Nuclear Changes Section 1: What is Radioactivity?
RADIATION *Penetrating rays emitted by a radioactive source *Ranges from Cosmic and Gamma Rays to Radio Waves.
1 Chapter 9 Nuclear Radiation 9.1 Natural Radioactivity Copyright © 2009 by Pearson Education, Inc.
Clip. Radiation Radiation: The process of emitting energy in the form of waves or particles.
Radioactivity Nucleus – center of the atom containing protons and neutrons –How are the protons and neutrons held together? Strong Force - an attractive.
Chapter 10 Nuclear Chemistry. Standards Addressed in this Chapter SPS3. Students will distinguish the characteristics and components of radioactivity.
10.1 Radioactivity Understand Radioactivity and distinguish between the types of decay.
Chapter 10: Nuclear Chemistry
P. Sci. Unit 12 Nuclear Radiation Chapter 10. Essential Questions 1)Identify four types of nuclear radiations and compare and contrast their properties.
Chapter 10 Nuclear Chemistry.
1 Clip. 1. Differentiate among alpha and beta particles and gamma radiation. 2. Differentiate between fission and fusion. 3. Explain the process half-life.
What is a nuclear reaction?
Nuclear Energy SI. A. What does radioactive mean? 1. Radioactive materials have unstable nuclei, which go through changes by emitting particles or releasing.
1. What is radioactivity? Radioactivity is the process in which an unstable atomic nucleus emits charged particles and energy. 2. What is a radioisotope?
NUCLEAR CHANGES. Nuclear Radiation Radioactivity: process by which an unstable nucleus emits one or more particles or energy in the form of electromagnetic.
Nuclear Chemistry I. Radioactivity A.Definitions B.Types of Nuclear Radiation C.Half-Life.
Nuclear Decay You will be learning: 1.What is alpha, beta, and gamma radiation. 2.Know the half-life of a radioactive material. 3.How to describe the process.
PHYSICS – Radioactivity
Early Pioneers in Radioactivity _________: Discoverer of X-rays 1895 _________: Discoverer of Radioactivity 1896 __________: Discoverers of Radium and.
P. Sci. Unit 12 Nuclear Radiation Chapter 10. Nuclear Radiation Strong Nuclear force – the force that holds protons and neutrons together. Remember that.
Radioactivity Elements that emit particles and energy from their nucleus are radioactive. Some large atoms are unstable and cannot keep their nucleus together.
NUCLEAR CHEMISTRY (Sections 4.4, ).  Notes: Read Section 4.4 in your text. Define all vocabulary words (words in bold). For each type of radiation,
1 Clip. 1. Differentiate among alpha and beta particles and gamma radiation. 2. Differentiate between fission and fusion. 3. Explain the process half-life.
DOMAIN 4 Energy Transformations: RADIOACTIVITY. What is nuclear radiation? Particles and energy released from an unstable nucleus May cause damage to.
Radioactivity Clip.
Radioactivity Nucleus – center of the atom containing protons and neutrons How are the protons and neutrons held together? Strong Force - an attractive.
Radioactivity Clip.
Radioactivity Clip.
Physics 1: Warm-Up 1/4/17 What are the parts of the atom? Draw a diagram. What is atomic mass? What is atomic number? What is an isotope?
Satish Pradhan Dnyanasadhana college, Thane
Radioactivity Clip.
Radioactivity Clip.
Radioactivity Clip.
Radioactivity.
Radioactivity Henri Becquerel discovered X-rays in As a result of his experiments, he also discovered other forms of rays that could be emitted.
Radioactivity.
Radioactivity Clip.
Presentation transcript:

1 Clip

1. Differentiate among alpha and beta particles and gamma radiation. 2. Differentiate between fission and fusion. 3. Explain the process half-life as related to radioactive decay. 4. Describe nuclear energy, its practical application as an alternative energy source, and its potential problems.2

Radioactivity is the spontaneous disintegration of atomic nuclei. The nucleus emits α particles, ß particles, or electromagnetic rays during this process. Radioactivity is the spontaneous disintegration of atomic nuclei. The nucleus emits α particles, ß particles, or electromagnetic rays during this process. After decaying, radioactive atoms “change” into other atoms3 Clip

Why does the atom do this? –t–the nucleus of an atom attempts to become more stable In some instances, a new element is formed and in other cases, a new form of the original element, called an isotope, appears. –t–this process of change is often referred to as the decay of atoms. The rate of Radioactive decay is described in h hh half-lives.4

Energy is released during radioactive decay 5

Types of Nuclear Radiation When an unstable nucleus decays, particles and energy are given off from the decaying nucleus. α and β radiation is in the form of particles γ radiation is in the form of waves-kind of like light but higher frequency6

7 Nuclear Decay Neutron decays into a proton 2 protons & 2 neutrons

13

14 C Radioactive 14 C acts chemically just like 12 C, so it becomes incorporated into plants an animals. When the animal/plant dies the 14 C begins to decay into 14 N at a know rate, so we can determine how long ago the organism died. This is called Carbon Dating. It’s only good for about 50,000 years.

25g The half life of 14 C is 5,730 years. If a sample originally contained 100 g, how much would be left after 11,460 years? 50g26

Older Dating Methods The isotopes 235 U and 238 U can be used to date objects billions of years old. 235 U has a half life of 704 million years. 238 U has a half life of 4.5 billion years. Mainly used for rocks.

Geiger Counter Used to measure radiation. The more intense the radiation the more “clicks”.

two protonstwo neutrons Alpha particles consist of two protons and two neutrons, identical to the nucleus of a helium atom. A sheet of paper or a person’s surface layer of skin will stop them. Alpha particles are only considered hazardous to a person’s health if they are ingested or inhaled and thus come into contact with sensitive cells such as in the lungs, liver and bones.8

9

Beta particles are electrons emitted from the nuclei of many fission products. Beta particles are electrons emitted from the nuclei of many fission products. They can travel a few feet in air but can usually be stopped by clothing or a few centimeters of wood. They are considered hazardous mainly if ingested or inhaled, but can cause radiation damage to the skin if the exposure is large enough. Unstable Neutron decays into a proton.10

11

Gamma rays are a form of electromagnetic radiation (like light, radio, and television) that come from the nucleus of a radioactive atom. –O–Occurs when an unstable nucleus emits electromagnetic radiation. The radiation has no mass, and so its emission does not change the element. –T–They penetrate matter easily and are best stopped by water or thick layers of lead or concrete. –G–Gamma radiation is hazardous to people inside and outside of the body. However, gamma radiation often accompanies alpha and beta emission, which do change the element's identity. Gamma rays have the lowest ionizing power, but the highest penetrating power. 12

13

Biological Effects of Radiation: Ionizing radiation causes physical damage to cells and DNA. Radiation can excite DNA and result in the destruction on the DNA backbone. At high doses of radiation (10, ,000 rads), death occurs in a few hours because of neurological and cardiovascular breakdown (Central Nervous Syndrome).14

Biological Effects of Radiation: Medium doses, rads, causes death to occur in a few days because of the destruction of the gastrointestinal mucosa. Lower doses, rads, causes death to occur after several weeks due to damage of the blood forming organs (hematopoietic syndrome).14

Medicine For example, radiation and r rr radioactive tracers are used to diagnose and treat medical problems. A radioactive tracer is a radioactive isotope that is added to a substance so that the substance can be detected later. Radioactive tracers are used to locate tumors, to study the functioning of a particular organ, or to monitor the flow of blood. For example, radioactive iodine-131 is used to diagnose thyroid problems. Radiation therapy used to treat cancer may involve the use of implanted radioactive isotopes such as gold-198 or iridium-192. Radiation is used positively in a variety of ways15

Industry Manufacturers can also use radiation to check the thickness of metal containers by measuring the amount of radiation that passes through. Small amounts of radioactive isotopes, like magnesium-28, can be introduced in a water source to determine the flow of underground water or to determine if an underground water system is leaking. Radioactive isotopes are even used in s ss smoke alarms.16

Generate electrical power Nuclear fission is used to generate electricity as an alternative energy source. Dating Even the age of fossils or rocks can be determined by using radioactive isotopes.17

Fission and Fusion FissionFusion Splitting a nucleus Combining of two nuclei.18

Nuclear power can come from the fission of uranium, plutonium or thorium or the fusion of hydrogen into helium. Today it is almost all uranium. The fission of an atom of uranium produces 10 million times the energy produced by the combustion of an atom of carbon from coal.19

Issues for Fission Power Plants disposalNeed for a spent fuel disposal facility and a decommissioning plan Use of large amounts of water for cooling purposes (if wet cooling towers are used) –thermal pollution Biological impactsBiological impacts on the ocean due to thermal discharge (if seawater cooling is used) safetyPublic safety concerns20 Clip

FUSION A fusion reaction occurs when nuclei of light elements, specifically hydrogen and its isotopes (deuterium, or "heavy water," and tritium), are forced together at extremely h hh high temperatures and densities until they fuse into nuclei of heavier elements and release enormous amounts of energy. If fusion is to yield net energy, the fuel must be heated in the form of plasma (a highly ionized gas) to a very high t tt temperature and the plasma must then be held together for a sufficiently long time such that the number of fusion reactions occurring releases more energy than was required to heat the fuel.21

Half Life is the amount of time it takes for half of the nuclei in a sample to decay Mass (kg)22

mass number Carbon occurs naturally in three isotopes. All of these atoms have the same number of protons but different numbers of neutrons. The number of neutrons and protons determines the mass, so the masses are different. 14C is radioactive. 14 C 12 C 13 C