Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to.

Slides:



Advertisements
Similar presentations
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Advertisements

How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Bayesian models for fMRI data
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free Energy Workshop - 28th of October: From the free energy principle to experimental neuroscience, and back The Bayesian brain, surprise and free-energy.
Human (ERP and imaging) and monkey (cell recording) data together 1. Modality specific extrastriate cortex is modulated by attention (V4, IT, MT). 2. V1.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
The free-energy principle: a rough guide to the brain? Karl Friston
Summarized by Eun Seok Lee BioIntelligence Lab 20 Sep, 2012
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
CDB Exploring Science and Society Seminar Thursday 19 November 2009 at 5.30pm Host: Prof Giorgio Gabella The Bayesian brain, surprise and free-energy.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference Karl Friston Abstract How much about our interaction with – and experience of – our world can be deduced from basic principles?
Computational and Physiological Models Part 1
Statistical learning and optimal control:
Abstract We start with a statistical formulation of Helmholtz’s ideas about neural energy to furnish a model of perceptual inference and learning that.
The free-energy principle: a rough guide to the brain? K Friston Summarized by Joon Shik Kim (Thu) Computational Models of Intelligence.
ABSTRACT: My treatment of critical gaps in models of probabilistic inference will focus on the potential of unified theories to “close the gaps” between.
DCM for ERPs/EFPs Clare Palmer & Elina Jacobs Expert: Dimitris Pinotsis.
Perceptual Multistability as Markov Chain Monte Carlo Inference.
Abstract This talk summarizes recent attempts to integrate action and perception within a single optimization framework. We start with a statistical formulation.
Dynamic causal modelling of electromagnetic responses Karl Friston - Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL In recent years,
Motor Control. Beyond babbling Three problems with motor babbling: –Random exploration is slow –Error-based learning algorithms are faster but error signals.
Abstract This talk summarizes our recent attempts to integrate action and perception within a single optimization framework. We start with a statistical.
Recent advances in the theory of brain function
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract We offer a formal treatment of choice behaviour based on the premise that agents minimise the expected free energy of future outcomes. Crucially,
Abstract Predictive coding models and the free-energy principle, suggests that cortical activity in sensory brain areas reflects the precision of prediction.
Abstract: This overview of the free energy principle offers an account of embodied exchange with the world that associates conscious operations with actively.
Abstract This presentation questions the need for reinforcement learning and related paradigms from machine-learning, when trying to optimise the behavior.
Zangwill Club Seminar - Lent Term The Bayesian brain, surprise and free-energy Karl Friston, Wellcome Centre for Neuroimaging, UCL Abstract Value-learning.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference
Dynamic Causal Modelling for EEG and MEG
Deans Lecture Reception PM, Lecture 6-7, Lecture theatre S1, Clayton Campus, Monash University). Models, maps and modalities in brain imaging Karl.
Reasons to be careful about reward A flow (policy) cannot be specified with a scalar function of states: the fundamental theorem of vector calculus – aka.
Abstract We will use schizophrenia as a case study of computational psychiatry. We first review the basic phenomenology and pathophysiological theories.
Brain modes and network discovery Karl Friston The past decade has seen tremendous advances in characterising functional integration in the brain. Much.
Free-energy and active inference
Abstract We suggested recently that attention can be understood as inferring the level of uncertainty or precision during hierarchical perception. In.
Abstract This presentation will look at action, perception and cognition as emergent phenomena under a unifying perspective: This Helmholtzian perspective.
Workshop on Mathematical Models of Cognitive Architectures December 5-9, 2011 CIRM, Marseille Workshop on Mathematical Models of Cognitive Architectures.
Abstract If we assume that neuronal activity encodes a probabilistic representation of the world that optimizes free- energy in a Bayesian fashion, then.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
Workshop on: The Free Energy Principle (Presented by the Wellcome Trust Centre for Neuroimaging) July 5 (Thursday) - 6 (Friday) 2012 Workshop on: The.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Bayesian Brain Probabilistic Approaches to Neural Coding 1.1 A Probability Primer Bayesian Brain Probabilistic Approaches to Neural Coding 1.1 A Probability.
Tutorial Session: The Bayesian brain, surprise and free-energy Value-learning and perceptual learning have been an important focus over the past decade,
Dynamic Causal Modeling of Endogenous Fluctuations
Free energy and active inference
Nicolas Alzetta CoNGA: Cognition and Neuroscience Group of Antwerp
Free energy and life as we know it
Free energy, the brain and life as we know it
Dynamic Causal Modelling (DCM): Theory
Computational models for imaging analyses
Wellcome Trust Centre for Neuroimaging University College London
The free-energy principle: a rough guide to the brain? K Friston
Predictive computational modelling in the brain (and other animals)
DCM - the practical bits
CRIS Workshop: Computational Neuroscience and Bayesian Modelling
Dynamic Causal Modelling for evoked responses
Presentation transcript:

Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand the self-organised behaviour of embodied agents, like ourselves, as satisfying basic imperatives for sustained exchanges with the environment. In brief, one simple driving force appears to explain many aspects of perception, action and the perception of action. This driving force is the minimisation of surprise or prediction error that – in the context of perception – corresponds to Bayes-optimal predictive coding (that suppresses exteroceptive prediction errors) and – in the context of action – reduces to classical motor reflexes (that suppress proprioceptive prediction errors). In what follows, we look at some of the phenomena that emerge from this single principle; such as the perceptual encoding of spatial trajectories that can both generate movement (of self) and recognise the movements (of others). These emergent behaviours rest upon prior beliefs about itinerant states of the world – but where do these beliefs come from? We will focus on recent proposals about the nature of prior beliefs and how they underwrite the active sampling of a spatially extended sensorium. Put simply, to minimise surprising states of the world, it is necessary to sample inputs that minimise uncertainty about the causes of sensory input. When this minimisation is implemented via prior beliefs – about how we sample the world – the resulting behaviour is remarkably reminiscent of searches of the sort seen in exploration or measured, in visual searches, with saccadic eye movements.. Embodied inference and spatial cognition Karl Friston University College London

“Objects are always imagined as being present in the field of vision as would have to be there in order to produce the same impression on the nervous mechanism” - von Helmholtz Thomas Bayes Geoffrey Hinton Richard Feynman From the Helmholtz machine to the Bayesian brain and self-organization Hermann Haken Richard Gregory Hermann von Helmholtz

temperature What is the difference between a snowflake and a bird? Phase-boundary …a bird can act (to avoid surprises)

Hidden states in the worldInternal states of the agent Sensations Action External states Fluctuations Posterior expectations The basic ingredients

Self organisation and the principle of least action Maximum entropy principle The principle of least free energy (minimising surprise) Minimum entropy principle Ergodic theorem

How can we minimize surprise (prediction error)? Change sensations sensations – predictions Prediction error Change predictions Action Perception …action and perception minimise free energy

Prior distribution Posterior distribution Likelihood distribution temperature Action as inference – the “Bayesian thermostat” Perception: Action:

Hidden states in the worldInternal states of the agent Sensations Action External states Fluctuations Posterior expectations How might the brain minimise free energy (prediction error)?

Hidden states in the worldInternal states of the agent Sensations Action External states Fluctuations Posterior expectations How might the brain minimise free energy (prediction error)? By using predictive coding (and reflexes)

Free energy minimisationGenerative modelPredictive coding with reflexes

occipital cortex geniculate visual cortex retinal input pons oculomotor signals Prediction error (superficial pyramidal cells) Conditional predictions (deep pyramidal cells) Top-down or backward predictions Bottom-up or forward prediction error proprioceptive input reflex arc David Mumford Predictive coding with reflexes Action Perception

Biological agents resist the second law of thermodynamics They must minimize their average surprise (entropy) They minimize surprise by suppressing prediction error (free-energy) Prediction error can be reduced by changing predictions (perception) Prediction error can be reduced by changing sensations (action) Perception entails recurrent message passing in the brain to optimize predictions Action makes predictions come true (and minimizes surprise)

visual input proprioceptive input Action with point attractors Descending proprioceptive predictions Exteroceptive predictions

action position (x) position (y) observation position (x) Heteroclinic cycle Descending proprioceptive predictions

Where do I expect to look?

saliencevisual inputstimulussampling Sampling the world to minimise uncertainty Perception as hypothesis testing – saccades as experiments Free energy principleminimise uncertainty

Hidden states in the worldInternal states of the agent Sensations Action External states Fluctuations Posterior expectations Prior expectations

Frontal eye fields Pulvinar salience map Fusiform (what) Superior colliculus Visual cortex oculomotor reflex arc Parietal (where)

Saccadic fixation and salience maps Visual samples Conditional expectations about hidden (visual) states And corresponding percept Saccadic eye movements Hidden (oculomotor) states

Thank you And thanks to collaborators: Rick Adams Sven Bestmann Jean Daunizeau Harriet Brown Lee Harrison Stefan Kiebel James Kilner Jérémie Mattout Klaas Stephan And colleagues: Peter Dayan Jörn Diedrichsen Paul Verschure Florentin Wörgötter And many others

Perception and Action: The optimisation of neuronal and neuromuscular activity to suppress prediction errors (or free- energy) based on generative models of sensory data. Learning and attention: The optimisation of synaptic gain and efficacy over seconds to hours, to encode the precisions of prediction errors and causal structure in the sensorium. This entails suppression of free-energy over time. Neurodevelopment: Model optimisation through activity- dependent pruning and maintenance of neuronal connections that are specified epigenetically Evolution: Optimisation of the average free-energy (free-fitness) over time and individuals of a given class (e.g., conspecifics) by selective pressure on the epigenetic specification of their generative models. Time-scale Free-energy minimisation leading to…