©G Dear 2010 – Not to be sold/Free to use

Slides:



Advertisements
Similar presentations
extended learning for chapter 11 (graphs)
Advertisements

Resultant of two forces
Slide 1 Insert your own content. Slide 2 Insert your own content.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 3.1 Chapter 3.
0 - 0.
ALGEBRAIC EXPRESSIONS
MULTIPLYING MONOMIALS TIMES POLYNOMIALS (DISTRIBUTIVE PROPERTY)
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
Teacher Name Class / Subject Date A:B: Write an answer here #1 Write your question Here C:D: Write an answer here.
Addition Facts
£1 Million £500,000 £250,000 £125,000 £64,000 £32,000 £16,000 £8,000 £4,000 £2,000 £1,000 £500 £300 £200 £100 Welcome.
Ch:7 Trigonometric Identities and Equations
1 Like Terms Press Ctrl-A ©2009 G Dear – Not to be sold/Free to use Stage 4 Years 7 & 8.
Credit revision Q 1 What is the sine rule ?. Credit revision Q 2 What three processes do you go through in order to factorise a quadratic ?
© S Haughton more than 3?
5.9 + = 10 a)3.6 b)4.1 c)5.3 Question 1: Good Answer!! Well Done!! = 10 Question 1:
1 Press Ctrl-A ©G Dear2009 – Not to be sold/Free to use Composite Area Stage 6 - Year 12 General Mathematic (HSC)
Translate the following verbal phrases to mathematical phrases.
Past Tense Probe. Past Tense Probe Past Tense Probe – Practice 1.
Unit 2 - Right Triangles and Trigonometry
Properties of Exponents
Addition 1’s to 20.
Test B, 100 Subtraction Facts
Week 1.
Bottoms Up Factoring. Start with the X-box 3-9 Product Sum
©G Dear 2010 – Not to be sold/Free to use
Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Work out the answer Hit the down arrow to check.
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Work out the answer Hit the down arrow to check.
Find the period of the function y = 4 sin x
1 Press Ctrl-A ©G Dear 2010 – Not to be sold/Free to use Distance between Two Points. Stage 6 - Year 11 Applied Mathematic (Preliminary Extension 1)
Trigonometry. Basic Ratios Find the missing Law of Sines Law of Cosines Special right triangles
A = Cos o x H Cosine Rule To find an adjacent side we need 1 side (hypotenuse) and the included angle. 9 cm 12 cm 60° 75° a a A = Cos ° x H A = Cos 75°
Press Ctrl-A ©G Dear2008 – Not to be sold/Free to use Cosine Rule Angles Stage 6 - Year 12 General Mathematic (HSC)
3.4 Sum and Difference Formula Warm-up (IN) 1.Find the distance between the points (2,-3) and (5,1). 2.If and is in quad. II, then 3.a. b. Learning Objective:
1 Press Ctrl-A ©G Dear 2010 – Not to be sold/Free to use Parallel and Perpendicular Stage 6 - Year 11 Applied Mathematic (Preliminary Extension 1)
Press Ctrl-A ©G Dear2008 – Not to be sold/Free to use Radial Survey Stage 6 - Year 12 General Mathematic (HSC)
1 Contents 1.General InformationGeneral Information 2.Finding SidesFinding Sides 3.Finding AnglesFinding Angles 4.BearingsBearings 5.Sine RuleSine Rule.
Press Ctrl-A ©G Dear2008 – Not to be sold/Free to use Finding a Side Stage 6 - Year 12 General Mathematic (HSC)
Press Ctrl-A ©G Dear2008 – Not to be sold/Free to use Sine Rule - Side Stage 6 - Year 12 General Mathematic (HSC)
Aim: What are the identities of sin (A ± B) and tan (A ±B)? Do Now: Write the cofunctions of the following 1. sin 30  2. sin A  3. sin (A + B)  sin.
1 Press Ctrl-A ©G Dear 2010 – Not to be sold/Free to use Angles between two lines. Stage 6 - Year 11 Mathematic Extension 1 (Preliminary)
1 Press Ctrl-A ©G Dear 2010 – Not to be sold/Free to use Trigonometry in 3 Dimensions Stage 6 - Year 11 Mathematic Extension 1 (Preliminary)
Right Triangle Trig Review Given the right triangle from the origin to the point (x, y) with the angle, we can find the following trig functions:
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©2009 G Dear – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
G Dear ©2010 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
Reducible to Quadratics
Solving by Factorising
©G Dear2008 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
©G Dear2010 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
Presentation transcript:

©G Dear 2010 – Not to be sold/Free to use Mathematic Extension 1 (Preliminary) Trigonometry Sum & Differences of angles Stage 6 - Year 11 Press Ctrl-A ©G Dear 2010 – Not to be sold/Free to use

Difference of Angles 1 -1 -1 A (cos y, sin y) (cos x, sin x) B 1 x-y x

Differences of Angles x - y We find the sum or difference of angles to make the hard questions easier. 1 -1 A (cos y, sin y) (cos x, sin x) B 1 x-y x 1 y -1 End of Slide

cos(x – y) = cos x cos y + sin x sin y Differences of Angles cos(x – y) = cos x cos y + sin x sin y Proof part 1 - distance formula d2 = (x2–x1)2 + (y2–y1)2 AB2 = (cos x – cos y)2 + (sin x – sin y)2 = cos2x – 2 cos x cos y + cos2y + sin2x – 2 sin x sin y + sin2y = (cos2x + sin2x) + (cos2y + sin2y) - 2cos x cos y - 2sin x sin y = 2 - 2(cos x cos y + sin x sin y) 1 Xo-yo End of Slide

cos(x – y) = cos x cos y + sin x sin y Differences of Angles cos(x – y) = cos x cos y + sin x sin y Proof part 2 – cosine rule a2 = b2 + c2 – 2bc cos A AB2 = 12 + 12 – 2(1)(1) cos(x - y) AB2 = 2 – 2 cos(x - y) 2 Xo-yo End of Slide

cos(x – y) = cos x cos y + sin x sin y Differences of Angles cos(x – y) = cos x cos y + sin x sin y Proof part 3 – from 1 and 2 x x 2 – 2 cos(x-y) = 2 2 - 2(cos x cos y + sin x sin y) 1 x x –2 cos(x-y) = 2 -2(cos x cos y + sin x sin y) 1 cos(x-y) = cos x cos y + sin x sin y xo-yo End of Slide

Sum of Angles 1 -1 A (cos y, sin y) (cos x, sin x) B x+y x y 1 1 -1

Sum & Differences of Angles xo + yo 1 -1 A (cos y, sin y) (cos x, sin x) B x+y x y 1 1 -1 End of Slide

Sum of Angles cos(x + y) = cos x cos y - sin x sin y Replace y with -y xo+yo End of Slide

Sum of Angles sin(x + y) = sin x cos y + cos x sin y Replace x with 90o-x cos(x–y) = cos x cos y + sin x sin y cos((90o-x)– y) = cos(90o-x) cos y + sin(90o-x) sin y cos(90o-(x+y)) = sin x cos y + cos x sin y sin(x+y) = sin x cos y + cos x sin y -1 xo+yo End of Slide

Differences of Angles sin(x - y) = sin x cos y - cos x sin y Replace y with -y sin (x+y) = sin x cos y + cos x sin y sin (x+(-y)) = sin x cos (-y) + cos x sin (-y) sin (x-y) = sin x cos y + cos x (-sin y) sin(x-y) = sin x cos y - cos x sin y xo-yo End of Slide

Sum of Angles sin(x + y) = sin x cos y + cos x sin y Replace x with 90o-x cos(x – y) = cos x cos y + sin x sin y cos((90o-x) – y) = cos (90o-x) cos y + sin (90o-x) sin y cos(90o- (x+y)) = sin x cos y + cos x sin y sin(x+y) = sin x cos y + cos x sin y xo+yo End of Slide

Sum of Angles 1 tan x + tan y tan (x+y) = 1 – tan x tan y sin(x+y) cos(x+y) = sin x cos y + cos x sin y tan(x+y) = cos x cos y - sin x sin y = sin x cos y + cos x sin y cos x cos y = sin x cos y cos x cos y xxxx + cos x sin y cos x cos y xxxx cos x cos y + sin x sin y cos x cos y xxxx xxxx cos x cos y - sin x sin y cos x cos y 1 = tan x + tan y tan(x+y) = 1 - tan x tan y xo+yo End of Slide

Differences of Angles 1 tan x - tan y tan (x-y) = 1 – tan x tan y sin(x-y) cos(x-y) = sin x cos y - cos x sin y tan(x-y) = cos x cos y + sin x sin y = sin x cos y - cos x sin y cos x cos y = sin x cos y cos x cos y xxxx - cos x sin y cos x cos y xxxx cos x cos y + sin x sin y cos x cos y xxxx xxxx cos x cos y + sin x sin y cos x cos y 1 = tan x - tan y tan(x-y) = 1 + tan x tan y xo-yo End of Slide

Sum & Differences of Angles cos(x – y) = cos x cos y + sin x sin y cos(x + y) = cos x cos y - sin x sin y sin(x + y) = sin x cos y + cos x sin y sin(x - y) = sin x cos y - cos x sin y tan x + tan y 1 – tan x tan y tan (x+y) = tan x - tan y 1 – tan x tan y tan (x-y) = End of Slide