The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.

Slides:



Advertisements
Similar presentations
Department of Physics University of Toronto Low Temperature Thermal Transport Across the Cuprate Phase Diagram Mike Sutherland Louis Taillefer Rob Hill.
Advertisements

Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Pairing of critical Fermi-surface states
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Quantum criticality, the cuprate superconductors, and the AdS/CFT correspondence HARVARD Talk online: sachdev.physics.harvard.edu.
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
LS Cable, a South Korean company based in Anyang-si near Seoul, has ordered three million metres of superconducting wire from US firm American Superconductor.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Two Particle Response in Cluster Dynamical Mean Field Theory Rosemary F. Wyse, Aspen Center for Physics, PHY/DMR Dynamical Mean Field Theory is.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum criticality –The physics of quantum critical phase transitions connects to some of the most challenging and technologically relevant problems in.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
Zheng-Yu Weng IAS, Tsinghua University
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum criticality of Fermi surfaces in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Talk online: sachdev.physics.harvard.edu.
Superconductivity and magnetism in iron-based superconductor
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
ARPES studies of unconventional
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, July 6, 2010 Andrey Chubukov University of Wisconsin.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Phys. Rev. Lett M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
The Landscape of the Hubbard model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Highly Frustrated Magnetism 2010 Johns Hopkins University.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Review on quantum criticality in metals and beyond
Toward a Holographic Model of d-wave Superconductors
Quantum vortices and competing orders
6/25/2018 Nematic Order on the Surface of three-dimensional Topological Insulator[1] Hennadii Yerzhakov1 Rex Lundgren2, Joseph Maciejko1,3 1 University.
Quantum phases and critical points of correlated metals
Search of a Quantum Critical Point in High Tc Superconductors
Quantum phases and critical points of correlated metals
Presentation transcript:

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu

Max Metlitski, Harvard HARVARD arXiv: Eun Gook Moon, Harvard

1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Influence of an applied magnetic field Theoretical predictions and experimental tests 3. Theory of spin density wave ordering in a metal Order parameter at zero wavevector 4. Theory of Ising-nematic ordering in a metal Order parameter at zero wavevector Outline

1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Influence of an applied magnetic field Theoretical predictions and experimental tests 3. Theory of spin density wave ordering in a metal Order parameter at zero wavevector 4. Theory of Ising-nematic ordering in a metal Order parameter at zero wavevector Outline

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface

N. E. Hussey, J. Phys: Condens. Matter 20, (2008) Crossovers in transport properties of hole-doped cuprates

Strange metal Crossovers in transport properties of hole-doped cuprates Pseudo- gap N. E. Hussey, J. Phys: Condens. Matter 20, (2008) T*

Strange metal Crossovers in transport properties of hole-doped cuprates S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. J. Millis, Phys. Rev. B 48, 7183 (1993). C. M. Varma, Phys. Rev. Lett. 83, 3538 (1999). Pseudo- gap T*

Strange metal Only candidate quantum critical point observed at low T T*

Antiferro- magnetism Fermi surface d-wave supercon- ductivity

Antiferro- magnetism Fermi surface d-wave supercon- ductivity

Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Hot spots

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hole pockets Hot spots

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hot spots

Fermi surface breaks up at hot spots into electron and hole “pockets” Hole pockets Electron pockets Hole-doped cuprates Hot spots S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Nature 450, 533 (2007) Quantum oscillations

Nature 450, 533 (2007) Quantum oscillations

arXiv: Fermi liquid behaviour in an underdoped high Tc superconductor Suchitra E. Sebastian, N. Harrison, M. M. Altarawneh, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich Evidence for small Fermi pockets

Theory of quantum criticality in the cuprates T*T*

Evidence for connection between linear resistivity and stripe-ordering in a cuprate with a low T c Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-T c superconductor R. Daou, Nicolas Doiron-Leyraud, David LeBoeuf, S. Y. Li, Francis Laliberté, Olivier Cyr-Choinière, Y. J. Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough & Louis Taillefer, Nature Physics 5, (2009)

Antiferro- magnetism Fermi surface d-wave supercon- ductivity

Fermi surface d-wave supercon- ductivity Spin density wave

Fermi surface d-wave supercon- ductivity Spin density wave

Theory of quantum criticality in the cuprates T*T*

T*T*

T*T*

T*T*

Criticality of the coupled dimer antiferromagnet at x=x s T*T*

Theory of quantum criticality in the cuprates Criticality of the topological change in Fermi surface at x=x m T*T*

Theory of quantum criticality in the cuprates T*T*

1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Influence of an applied magnetic field Theoretical predictions and experimental tests 3. Theory of spin density wave ordering in a metal Order parameter at zero wavevector 4. Theory of Ising-nematic ordering in a metal Order parameter at zero wavevector Outline

1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Influence of an applied magnetic field Theoretical predictions and experimental tests 3. Theory of spin density wave ordering in a metal Order parameter at zero wavevector 4. Theory of Ising-nematic ordering in a metal Order parameter at zero wavevector Outline

T*T*

H c2 T*T*

Quantum oscillations T*T*

T. Helm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 103, (2009). Quantum oscillations

H c2 T*T*

H sdw T*T*

Neutron scattering & muon resonance T*T*

J. Chang, N. B. Christensen, Ch. Niedermayer, K. Lefmann, H. M. Roennow, D. F. McMorrow, A. Schneidewind, P. Link, A. Hiess, M. Boehm, R. Mottl, S. Pailhes, N. Momono, M. Oda, M. Ido, and J. Mesot, Phys. Rev. Lett. 102, (2009). J. Chang, Ch. Niedermayer, R. Gilardi, N.B. Christensen, H.M. Ronnow, D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, C. Baines, N. Momono, M. Oda, M. Ido, and J. Mesot, Physical Review B 78, (2008).

D. Haug, V. Hinkov, A. Suchaneck, D. S. Inosov, N. B. Christensen, Ch. Niedermayer, P. Bourges, Y. Sidis, J. T. Park, A. Ivanov, C. T. Lin, J. Mesot, and B. Keimer, Phys. Rev. Lett. 103, (2009)

T*T*

T*T*

E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K. Mang, and M. Greven,Nature 445, 186 (2007).

T*T*

G. Knebel, D. Aoki, and J. Flouquet, arXiv: Similar phase diagram for CeRhIn 5

T*T*

T*T*

Similar phase diagram for the pnictides Ishida, Nakai, and Hosono arXiv: v1 S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, arXiv:

T*T*

S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998). R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, (2008).

S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998). R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, (2008).

T*T*

R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Physical Review B 78, (2008). Onset of superconductivity disrupts SDW order, but VBS/CDW/ Ising-nematic ordering can survive VBS/CDW and/or Ising-nematic order T I-n

1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Influence of an applied magnetic field Theoretical predictions and experimental tests 3. Theory of spin density wave ordering in a metal Order parameter at zero wavevector 4. Theory of Ising-nematic ordering in a metal Order parameter at zero wavevector Outline

1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Influence of an applied magnetic field Theoretical predictions and experimental tests 3. Theory of spin density wave ordering in a metal Order parameter at zero wavevector 4. Theory of Ising-nematic ordering in a metal Order parameter at zero wavevector Outline

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

“Hot spot” “Cold” Fermi surfaces

Hertz-Moriya-Millis (HMM) theory

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004). Hertz-Moriya-Millis (HMM) theory

Y. Huh and S. Sachdev, Phys. Rev. B 78, (2008).

RG-improved Migdal-Eliashberg theory

Dynamical Nesting RG-improved Migdal-Eliashberg theory Bare Fermi surface

Dynamical Nesting RG-improved Migdal-Eliashberg theory Dressed Fermi surface

Dynamical Nesting RG-improved Migdal-Eliashberg theory Bare Fermi surface

Dynamical Nesting RG-improved Migdal-Eliashberg theory Dressed Fermi surface

RG-improved Migdal-Eliashberg theory

Dangerous

Double line representation A way to compute the order of a diagram. Extra powers of N come from the Fermi-surface What are the conditions for all propagators to be on the Fermi surface? Concentrate on diagrams involving a single pair of hot-spots Any bosonic momentum may be (uniquely) written as R. Shankar, Rev. Mod. Phys. 66, 129 (1994). S. W. Tsai, A. H. Castro Neto, R. Shankar, and D. K. Campbell, Phys. Rev. B 72, (2005).

=

Graph is planar after turning fermion propagators also into double lines by drawing additional dotted single line loops for each fermion loop = Sung-Sik Lee, arXiv:

A consistent analysis requires resummation of all planar graphs =

1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Influence of an applied magnetic field Theoretical predictions and experimental tests 3. Theory of spin density wave ordering in a metal Order parameter at zero wavevector 4. Theory of Ising-nematic ordering in a metal Order parameter at zero wavevector Outline

1. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity 2. Influence of an applied magnetic field Theoretical predictions and experimental tests 3. Theory of spin density wave ordering in a metal Order parameter at zero wavevector 4. Theory of Ising-nematic ordering in a metal Order parameter at zero wavevector Outline

Quantum criticality of Pomeranchuk instability

Theory of Ising-nematic transition

“Hot” Fermi surfaces

Computations in the 1/N expansion Sung-Sik Lee, Physical Review B 80, (2009)

Computations in the 1/N expansion Sung-Sik Lee, Physical Review B 80, (2009)

Identified quantum criticality in cuprate superconductors with a critical point at optimal doping associated with onset of spin density wave order in a metal Conclusions Elusive optimal doping quantum critical point has been “hiding in plain sight”. It is shifted to lower doping by the onset of superconductivity

Conclusions Theories for the onset of spin density wave and Ising- nematic order in metals are strongly coupled in two dimensions