Additional formulae sin (A + B) = sin A cos B + sin B cos A

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Find the exact trig values for an angle of
Periodic Functions & Applications II
IB Revision Lesson 2 30° 45° 60° sin θ cos θ tan θ.
Agenda Homework Folders In Warm up
Resultant of two forces
Algebraic Expressions
Trigonometry—Law of Sines
2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt Time Money AdditionSubtraction.
SOLVING EQUATIONS AND EXPANDING BRACKETS
Ch:7 Trigonometric Identities and Equations
6.3 Double-Angle & Half-Angle Identities
Slide 6-1 COMPLEX NUMBERS AND POLAR COORDINATES 8.1 Complex Numbers 8.2 Trigonometric Form for Complex Numbers Chapter 8.
Chapter 7 Review.
8 2.
UNIT 2: SOLVING EQUATIONS AND INEQUALITIES SOLVE EACH OF THE FOLLOWING EQUATIONS FOR y. # x + 5 y = x 5 y = 2 x y = 2 x y.
Solve x2 + 8x -12 = 0 by completing the square x2 + 8x =12
Unit 2 - Right Triangles and Trigonometry
13.3 Trig functions of general angles
8-2 Trigonometric Ratios Warm Up Lesson Presentation Lesson Quiz
Chapter 6 Equations 6.1 Solving Trigonometric Equations 6.2 More on Trigonometric Equations 6.3 Trigonometric Equations Involving Multiples Angles 6.4.
CH 8 Right Triangles. Geometric Mean of 2 #’s If you are given two numbers a and b you can find the geometric mean. a # = # b 3 x = x 27 Ex ) 3 and 27.
10-7 The Quadratic Formula
Bottoms Up Factoring. Start with the X-box 3-9 Product Sum
Right Triangle Trigonometry
SOLVING EQUATIONS WITH ADDITION & SUBTRACTION By: Erica Wagner Let’s get started! Let’s get started!
Example Express -8sinx° + 15cosx° in the form ksin(x + )° *********
Trigonometric Identities
EXAMPLE 1 Evaluate inverse trigonometric functions Evaluate the expression in both radians and degrees. a.cos –1 3 2 √ SOLUTION a. When 0 θ π or 0° 180°,
5.5 Solving Trigonometric Equations Example 1 A) Is a solution to ? B) Is a solution to cos x = sin 2x ?
Find the period of the function y = 4 sin x
Trigonometric equations
Solving Trigonometric Equations. First Degree Trigonometric Equations: These are equations where there is one kind of trig function in the equation and.
Section 5.5.  In the previous sections, we used: a) The Fundamental Identities a)Sin²x + Cos²x = 1 b) Sum & Difference Formulas a)Cos (u – v) = Cos u.
Verify a trigonometric identity
5-5 Solving Right Triangles. Find Sin Ѳ = 0 Find Cos Ѳ =.7.
5.5 Multiple-Angle and Product-Sum Formulas. Find all solutions in.
Trigonometric Equations Edited by Mr. Francis Hung Last Updated: 2013–03–12 1http:///
Verify a trigonometric identity
Trig – 4/21/2017 Simplify. 312 Homework: p382 VC, 1-8, odds
Section 5.5 Double Angle Formulas
CHAPTER 7: Trigonometric Identities, Inverse Functions, and Equations
Chapter 6 Trig 1060.
Sum and Difference Formulas New Identities. Cosine Formulas.
Trigonometric Equations Edited by Mr. Francis Hung Last Updated:
Evaluating Inverse Trigonometric Functions
3.7 Trig Equations Warm-up (IN) 1.Solve: 2.Find the exact value of: Learning Objective: to identify numerous solutions to trig equations, understand the.
Solving Trigonometric Equations T, 11.0: Students demonstrate an understanding of half-angle and double- angle formulas for sines and cosines and can use.
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
Trigonometry Exact Value Memory Quiz A Trigonometry Exact Value Memory Quiz A.
Sum and Difference Formulas...using the sum and difference formula to solve trigonometric equation.
Aim: How do we solve trig equations using reciprocal or double angle identities? Do Now: 1. Rewrite in terms of 2. Use double angle formula to rewrite.
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
EXAMPLE 1 Evaluate trigonometric expressions Find the exact value of (a) cos 165° and (b) tan. π 12 a. cos 165° 1 2 = cos (330°) = – 1 + cos 330° 2 = –
Sin x = Solve for 0° ≤ x ≤ 720°
A. Calculate the value of each to 4 decimal places: i)sin 43sin 137sin 223sin 317. ii) cos 25cos 155cos 205cos 335. iii)tan 71tan 109 tan 251tan 289.
Pg. 407/423 Homework Pg. 407#33 Pg. 423 #16 – 18 all #9 tan x#31#32 #1x = 0.30, 2.84#2x = 0.72, 5.56 #3x = 0.98#4No Solution! #5x = π/6, 5π/6#6Ɵ = π/8.
MULTIPLE ANGLE & PRODUCT –TO-SUM IDENTITIES Section 5-5.
PreCalculus 5-3 Solving Trigonometric Equation. Trigonometric Equations To solve trigonometric equations, we must solve for all values of the variable.
Bilborough College Maths - core 4 double angle formulae (Adrian)
Double Angle Identities (1) sin (A + A) = sin A cos A + cos A sin A sin (2A) sin (2A) = 2 sin A cos A sin (A + B) = sin A cos B + cos A sin B What does.
5.5/5.6 – Double- and Half-Angle Identities
Find sin 2x, cos 2x, and tan 2x from the given information: {image} Select the correct answer:
Double- And Half-Angle Formulas
Examples Double Angle Formulas
Double-Angle and Half-Angle Formulas 5.3
5.5-Multiple Angle Formulas
Double-Angle, Half-Angle Formulas
Academy Algebra II 14.7: (PC 5.5): Multiple-Angle and Product-Sum
Presentation transcript:

Additional formulae sin (A + B) = sin A cos B + sin B cos A cos (A + B) = cos A cos B - sin A sin B cos (A - B) = cos A cos B + sin A sin B

Examples Find the exact value of sin 75 sin (A + B) = sin A cos B + sin B cos A sin (30 + 45) = sin 30 cos 45 + sin 45 cos 30

Examples Express cos (x + /3) in terms of cos x and sin x cos (A + B) = cos A cos B - sin A sin B cos (x + /3) = cos x cos /3 - sin /3 sin x

Examples L.H.S. = R.H.S.

Double angle formulae sin (A + B) = sin A cos B + sin B cos A sin (A + A) = sin A cos A + sin A cos A sin 2A = 2 sin A cos A cos (A + B) = cos A cos B - sin A sin B cos (A + A) = cos A cos A- sin A sin A cos (A + A) = cos2A - sin2A cos 2A = cos2A - sin2A cos 2A = 2cos2A - 1 cos 2A = 1 – 2sin2A

Double angle formulae

Examples Given that cos A = 2/3, find the exact value of cos 2A. cos 2A = 2cos2A - 1 Given that sin A = ¼ , find the exact value of sin 2A. sin 2A = 2 sin A cos A A 4 1 15

Solving equations Solve cos 2A + 3 + 4 cos A = 0 for 0  x  2

Solving equations Solve sin 2A = sin A for -   x   =2sin A cos A = sin A =2 sin A cos A – sin A = 0 = sin A(2 cos A – 1) = 0  sin A = 0 or cos A = ½ sin A = 0  A = -  or 0 or  cos A = ½  A = - /3 or /3 Complete solution: A = -  or - /3 or 0 or /3 or 

Solving equations Solve tan 2A + 5 tan A = 0 for 0 x  2 tan A = 0  A = 0 or  or 2 7 – 5tan2 A = 0 tan A =  7/5  A = 0.97 , 2.27, 4.01 or 5.41c Complete solution: A= 0.97 , 2.27, 4.01, 5.41c 0,  or 2

Harmonic form If a and b are positive a sin x + b cos x can be written in the form R sin( x +  ) a sin x - b cos x can be written in the form R sin( x -  ) a cos x + b sin x can be written in the form R cos( x -  ) a cos x - b sin x can be written in the form R cos( x +  )

Examples Express 3 cos x + 4 sin x in the form R cos( x -  ) R cos( x -  ) = R cos x cos  + R sin x sin  3 cos x + 4 sin x = R cos x cos  + R sin x sin  R cos  = 3 [1] R sin  = 4 [2] [1]2 + [2]2 : R2 sin2 x + R2 cos2 x = 32 + 42 R2(sin2 x + cos2 x ) = 32 + 42 R2= 32 + 42 = 25  R = 5 [2]  [1]: tan  = 4/3   = 53.1 3 cos x + 4 sin x = 5 cos( x + 53.1 )

Examples Express 12 cos x + 5 sin x in the form R sin( x +  ) R sin( x +  ) = R sin x cos  + R cos x sin  12 cos x + 5 sin x = R sin x cos  + R cos x sin  R cos  = 12 [1] R sin  = 5 [2] [1]2 + [2]2 : R2 cos2 x + R2 sin2 x = 122 + 52 R2(cos2 x + sin2 x ) = 122 + 52 R2= 122 + 52 = 169  R = 13 [2]  [1]: tan  = 5/12   = 22.6 12 cos x + 5 sin x = 13 sin( x + 22.6 )

Examples Express cos x - 3 sin x in the form R cos( x +  ) R cos( x +  ) = R cos x cos  - R sin x sin  cos x - 3 sin x = R cos x cos  - R sin x sin  R cos  = 1 [1] R sin  = 3 [2] [1]2 + [2]2 : R2 cos2 x + R2 sin2 x = 12 + (3 ) 2 R2(cos2 x + sin2 x ) = 12 + 3 R2= 1 + 3 = 4  R = 2 [2]  [1]: tan  = 3   = 60 cos x + 3 sin x = 2 cos( x + 60 )

Solving equations Solve 7 sin x + 3 cos x = 6 for 0 x  2 R sin( x +  ) = R sin x cos  + R cos x sin  7 sin x + 3 cos x = R sin x cos  + R cos x sin  R cos  = 7 [1] R sin  = 3 [2] R2 = 72 + 32  R = 7.62 [2]  [1]: tan  = 3/7   = 0.405c (Radians) 7 sin x + 3 cos x = 7.62 sin( x + 0.405) 7.62 sin( x + 0.405 ) = 6  x + 0.405 = sin-1(6/7.62) x + 0.405 = 0.907 or 2.235 x = 0.502c or 1.830c