Lecture 2 Two’s Complement Proofs Topics Two’s complement January 11, 2016 CSCE 212H Computer Architecture.

Slides:



Advertisements
Similar presentations
When NOT to use Unsigned? Don’t Use Just Because Number Nonzero – C compilers on some machines generate less efficient code unsigned i; for (i = 1; i
Advertisements

Fabián E. Bustamante, Spring 2007 Integers Today Numeric Encodings Programming Implications Basic operations Programming Implications Next time Floats.
CSCE 212 Computer Organization Lecture 2 Data Representation.
CS213 Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations Addition, negation, multiplication.
Bits and Bytes January 17, 2002 Topics Why bits? Representing information as bits –Binary/Hexadecimal –Byte representations »numbers »characters and strings.
Bits, Bytes, and Integers August 29, 2007 Topics Representing information as bits Bit-level manipulations Boolean algebra Expressing in C Representations.
“The course that gives CMU its Zip!” Topics Numeric Encodings –Unsigned & Two’s complement Programming Implications –C promotion rules Basic operations.
CS213 Integers Apr 3, 2006 Topics Numeric Encodings
“The course that gives CMU its Zip!” Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations.
ICS 2005 Instructor: Peter A. Dinda TA: Bin Lin Recitation 2.
February 4, 2003 CSCE 212 Computer Architecture Lecture 3 Representing Integers.
Carnegie Mellon 1 This Week: Integers Integers  Representation: unsigned and signed  Conversion, casting  Expanding, truncating  Addition, negation,
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Bits, Bytes, and Integers : Introduction to.
Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations Addition, negation, multiplication Programming.
Int’s and Integers CENG331: Introduction to Computer Systems 3 rd Lecture Instructor: Erol Sahin Acknowledgement: Most of the slides are adapted from the.
– 1 – CS 105 Computer Systems Introduction Topics: Class Intro Data Representation CS 105 “Tour of the Black Holes of Computing!” Geoff Kuenning Fall 2015.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Bits, Bytes, and Integers MCS-284 : Computer Organization.
Carnegie Mellon 1 Bits, Bytes, and Integers Lecture, Jan. 24, 2013 These slides are from website which accompanies the book “Computer.
Comp Integers Spring 2015 Topics Numeric Encodings
CS 270: Computer Organization Bits, Bytes, and Integers
Bits and Bytes Topics Representing information as bits Bit-level manipulations Boolean algebra Expressing in C.
Lecture 3: Computation and Representation CS 2011 Fall 2014, Dr. Rozier.
“The course that gives CMU its Zip!” Topics Basic operations –Addition, negation, multiplication Programming Implications –Consequences of overflow.
Carnegie Mellon 1 Bits, Bytes, and Integers : Introduction to Computer Systems 3 rd Lectures, May 27th, 2014 Instructors: Greg Kesden.
Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations Addition, negation, multiplication Programming.
Bits and Bytes Topics Why bits? Tell me Representing information as bits Binary/Hexadecimal Byte representations »numbers »characters and strings »Instructions.
Bits, Bytes, and Integers Topics Representing information as bits Bit-level manipulations Boolean algebra Expressing in C Representations of Integers Basic.
1 Saint Louis University Arithmetic and Bitwise Operations on Binary Data CSCI 224 / ECE 317: Computer Architecture Instructor: Prof. Jason Fritts Slides.
– 1 – Number Systems Number of symbols = base of the system Most intuitive -- base 10 (decimal system) counting on fingertips symbols
CS 105 “Tour of the Black Holes of Computing” Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations.
Carnegie Mellon Introduction to Computer Systems /18-243, spring rd Lecture, Jan. 20 th Instructors: Gregory Kesden and Markus Püschel.
Info stored in computer (memory) Numbers All in binaray – can be converted to octal, hex Characters ASCII – 1-byte/char Unicode – 2-byte/char Unicode-table.com/en.
Carnegie Mellon 1 This week: Bits, Bytes, and Integers Representing information as bits Bit-level manipulations Integers  Representation: unsigned and.
CS 105 “Tour of the Black Holes of Computing” Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations.
Int’s and Integers CENG331: Introduction to Computer Systems 3 rd Lecture Instructor: Erol Sahin Acknowledgement: Most of the slides are adapted from the.
Carnegie Mellon 1 Bits, Bytes, and Integers : Introduction to Computer Systems 2 nd Lecture, Aug. 26, 2010 Instructors: Randy Bryant and Dave O’Hallaron.
“The course that gives CMU its Zip!” Topics Basic operations –Addition, negation, multiplication Programming Implications –Consequences of overflow.
Integers Topics Representations of Integers Basic properties and operations Implications for C.
Carnegie Mellon 1 Bits, Bytes, and Integers : Introduction to Computer Systems 2 nd and 3 rd Lectures, Aug 29 and Sep 3, 2013 Instructors: Randy.
Carnegie Mellon Bits, Bytes, and Integers (1-2) /18-243: Introduction to Computer Systems 2 nd Lecture, 19 May 2011 Instructors: Gregory Kesden.
Carnegie Mellon 1 Bits, Bytes, and Integers : Introduction to Computer Systems 2 nd and 3 rd Lectures, Aug 30 and Sep 4, 2012 Instructors: Dave O’Hallaron,
Bits, Bytes, and Integers September 1, 2006 Topics Representing information as bits Bit-level manipulations Boolean algebra Expressing in C Representations.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Bits, Bytes, and Integers : Introduction to.
Lecture 2 Ints revisited Topics Unsigned Integers Signed magnitude Two’s complement January 11, 2016 CSCE 212H Computer Architecture.
Lecture 4: Representing Negative Numbers CS 2011 Spring 2016, Dr. Rozier.
Number Systems and Representations Binary Representation Binary Representation Signed numbers Signed numbers Very small and very big numbers Very small.
Topics Numeric Encodings –Unsigned & Two’s complement Programming Implications –C promotion rules Basic operations –Addition, negation, multiplication.
Instructors: Greg Kesden
This Week: Integers Integers Summary
CS 367 Integers Topics (Ch. 2.2, 2.3) Numeric Encodings
Bits, Bytes, and Integers CSE 238/2038/2138: Systems Programming
Instructor: David Ferry
Integer Representations and Arithmetic
CS213 Integers Topics Numeric Encodings Programming Implications
CS 105 “Tour of the Black Holes of Computing”
CS 105 “Tour of the Black Holes of Computing”
Comp Integers Spring 2015 Topics Numeric Encodings
Representing Information (2)
Bits and Bytes Topics Representing information as bits
Bits, Bytes, and Integers January 16, 2008
Bits and Bytes Topics Representing information as bits
Bits and Bytes Topics Representing information as bits
Bits and Bytes Topics Representing information as bits
Arithmetic Topics Basic operations Programming Implications
Representing Information (2)
Comp Org & Assembly Lang
Bits, Bytes, and Integers Part 2 3rd Lectures
Computer Organization COMP 210
“The Class That Gives CMU Its Zip!”
“The Class That Gives CMU Its Zip!”
Presentation transcript:

Lecture 2 Two’s Complement Proofs Topics Two’s complement January 11, 2016 CSCE 212H Computer Architecture

– 2 – CSCE 212H Spring 2016 Overview Last Time – Lec02 slides 1-29 Course Pragmatics Website Text - "Computer Systems: A Programmer's Perspective" 3 rd ed Ints are not integers; floats are not reals; unsigned are Z mod 2 wToday Slides 29- from Lec02 Two’s Complement formal notation Two’s Complement representation (from text) -1 on highest bit Two’s Complement representation (take 2) To represent a positive number - same as signed magnitude To represent a negative number – take two’s complement of magnitude

– 3 – CSCE 212H Spring 2016 Review – Values represented by int Representations Unsigned Signed Magnitude 2’s complement

Carnegie Mellon 4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Two-complement Encoding Example (Cont.) x = 15213: y = :

Carnegie Mellon 5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Sign Extension Task:  Given w-bit signed integer x  Convert it to w+k-bit integer with same value Rule:  Make k copies of sign bit:  X = x w–1,…, x w–1, x w–1, x w–2,…, x 0 k copies of MSB X X w w k

Carnegie Mellon 6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Sign Extension Example Converting from smaller to larger integer data type C automatically performs sign extension short int x = 15213; int ix = (int) x; short int y = ; int iy = (int) y;

Carnegie Mellon 7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Summary: Expanding, Truncating: Basic Rules Expanding (e.g., short int to int)  Unsigned: zeros added  Signed: sign extension  Both yield expected result Truncating (e.g., unsigned to unsigned short)  Unsigned/signed: bits are truncated  Result reinterpreted  Unsigned: mod operation  Signed: similar to mod  For small numbers yields expected behavior

Carnegie Mellon 8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Unsigned Addition Standard Addition Function  Ignores carry output Implements Modular Arithmetic s= UAdd w (u, v)=u + v mod 2 w u v + u + v True Sum: w+1 bits Operands: w bits Discard Carry: w bits UAdd w (u, v)

Carnegie Mellon 9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Visualizing (Mathematical) Integer Addition Integer Addition  4-bit integers u, v  Compute true sum Add 4 (u, v)  Values increase linearly with u and v  Forms planar surface Add 4 (u, v) u v

Carnegie Mellon 10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Visualizing Unsigned Addition Wraps Around  If true sum ≥ 2 w  At most once 0 2w2w 2 w+1 UAdd 4 (u, v) u v True Sum Modular Sum Overflow

Carnegie Mellon 11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Two’s Complement Addition TAdd and UAdd have Identical Bit-Level Behavior  Signed vs. unsigned addition in C: int s, t, u, v; s = (int) ((unsigned) u + (unsigned) v); t = u + v  Will give s == t u v + u + v True Sum: w+1 bits Operands: w bits Discard Carry: w bits TAdd w (u, v)

Carnegie Mellon 12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition TAdd Overflow Functionality  True sum requires w+1 bits  Drop off MSB  Treat remaining bits as 2’s comp. integer –2 w –1 –2 w 0 2 w –1 –1 2 w –1 True Sum TAdd Result 1 000… … … … …1 100…0 000…0 011…1 PosOver NegOver

Carnegie Mellon 13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Visualizing 2’s Complement Addition Values  4-bit two’s comp.  Range from -8 to +7 Wraps Around  If sum  2 w–1  Becomes negative  At most once  If sum < –2 w–1  Becomes positive  At most once TAdd 4 (u, v) u v PosOver NegOver

Carnegie Mellon 14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Multiplication Goal: Computing Product of w-bit numbers x, y  Either signed or unsigned But, exact results can be bigger than w bits  Unsigned: up to 2w bits  Result range: 0 ≤ x * y ≤ (2 w – 1) 2 = 2 2w – 2 w  Two’s complement min (negative): Up to 2w-1 bits  Result range: x * y ≥ (–2 w–1 )*(2 w–1 –1) = –2 2w–2 + 2 w–1  Two’s complement max (positive): Up to 2w bits, but only for (TMin w ) 2  Result range: x * y ≤ (–2 w–1 ) 2 = 2 2w–2 So, maintaining exact results…  would need to keep expanding word size with each product computed  is done in software, if needed  e.g., by “arbitrary precision” arithmetic packages

Carnegie Mellon 15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Unsigned Multiplication in C Standard Multiplication Function  Ignores high order w bits Implements Modular Arithmetic UMult w (u, v)=u · v mod 2 w u v * u · v True Product: 2*w bits Operands: w bits Discard w bits: w bits UMult w (u, v)

Carnegie Mellon 16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Signed Multiplication in C Standard Multiplication Function  Ignores high order w bits  Some of which are different for signed vs. unsigned multiplication  Lower bits are the same u v * u · v True Product: 2*w bits Operands: w bits Discard w bits: w bits TMult w (u, v)

Carnegie Mellon 17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Power-of-2 Multiply with Shift Operation  u << k gives u * 2 k  Both signed and unsigned Examples  u << 3==u * 8  (u << 5) – (u << 3)==u * 24  Most machines shift and add faster than multiply  Compiler generates this code automatically u 2k2k * u · 2 k True Product: w+k bits Operands: w bits Discard k bits: w bits UMult w (u, 2 k ) k 000 TMult w (u, 2 k ) 000

Carnegie Mellon 18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Unsigned Power-of-2 Divide with Shift Quotient of Unsigned by Power of 2  u >> k gives  u / 2 k   Uses logical shift u 2k2k / u / 2 k Division: Operands: k 000  u / 2 k  Result:. Binary Point

Carnegie Mellon 19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Arithmetic: Basic Rules Addition:  Unsigned/signed: Normal addition followed by truncate, same operation on bit level  Unsigned: addition mod 2 w  Mathematical addition + possible subtraction of 2 w  Signed: modified addition mod 2 w (result in proper range)  Mathematical addition + possible addition or subtraction of 2 w Multiplication:  Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level  Unsigned: multiplication mod 2 w  Signed: modified multiplication mod 2 w (result in proper range)

Carnegie Mellon 20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Why Should I Use Unsigned? Don’t use without understanding implications  Easy to make mistakes unsigned i; for (i = cnt-2; i >= 0; i--) a[i] += a[i+1];  Can be very subtle #define DELTA sizeof(int) int i; for (i = CNT; i-DELTA >= 0; i-= DELTA)...

Carnegie Mellon 21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Counting Down with Unsigned Proper way to use unsigned as loop index unsigned i; for (i = cnt-2; i < cnt; i--) a[i] += a[i+1]; See Robert Seacord, Secure Coding in C and C++  C Standard guarantees that unsigned addition will behave like modular arithmetic  0 – 1  UMax Even better size_t i; for (i = cnt-2; i < cnt; i--) a[i] += a[i+1];  Data type size_t defined as unsigned value with length = word size  Code will work even if cnt = UMax  What if cnt is signed and < 0?

Carnegie Mellon 22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Why Should I Use Unsigned? (cont.) Do Use When Performing Modular Arithmetic  Multiprecision arithmetic Do Use When Using Bits to Represent Sets  Logical right shift, no sign extension

Carnegie Mellon 23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Byte-Oriented Memory Organization Programs refer to data by address  Conceptually, envision it as a very large array of bytes  In reality, it’s not, but can think of it that way  An address is like an index into that array  and, a pointer variable stores an address Note: system provides private address spaces to each “process”  Think of a process as a program being executed  So, a program can clobber its own data, but not that of others 000 FFF

Carnegie Mellon 24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine Words Any given computer has a “Word Size”  Nominal size of integer-valued data  and of addresses  Until recently, most machines used 32 bits (4 bytes) as word size  Limits addresses to 4GB (2 32 bytes)  Increasingly, machines have 64-bit word size  Potentially, could have 18 PB (petabytes) of addressable memory  That’s 18.4 X  Machines still support multiple data formats  Fractions or multiples of word size  Always integral number of bytes

Carnegie Mellon 25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Word-Oriented Memory Organization Addresses Specify Byte Locations  Address of first byte in word  Addresses of successive words differ by 4 (32-bit) or 8 (64-bit) bit Words BytesAddr bit Words Addr = ?? Addr = ?? Addr = ?? Addr = ?? Addr = ?? Addr = ??

Carnegie Mellon 26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Example Data Representations C Data TypeTypical 32-bitTypical 64-bitx86-64 char 111 short 222 int 444 long 488 float 444 double 888 long double −−10/16 pointer488

Carnegie Mellon 27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Byte Ordering So, how are the bytes within a multi-byte word ordered in memory? Conventions  Big Endian: Sun, PPC Mac, Internet  Least significant byte has highest address  Little Endian: x86, ARM processors running Android, iOS, and Windows  Least significant byte has lowest address

Carnegie Mellon 28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Byte Ordering Example Example  Variable x has 4-byte value of 0x  Address given by &x is 0x100 0x1000x1010x1020x x1000x1010x1020x Big Endian Little Endian

Carnegie Mellon 29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Representing Integers Decimal:15213 Binary: Hex: 3 B 6 D Decimal:15213 Binary: Hex: 3 B 6 D 6D 3B 00 IA32, x B 6D 00 Sun int A = 15213; 93 C4 FF IA32, x86-64 C4 93 FF Sun Two’s complement representation int B = ; long int C = 15213; 00 6D 3B 00 x B 6D 00 Sun 6D 3B 00 IA32

Carnegie Mellon 30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Examining Data Representations Code to Print Byte Representation of Data  Casting pointer to unsigned char * allows treatment as a byte array Printf directives: %p:Print pointer %x:Print Hexadecimal typedef unsigned char *pointer; void show_bytes(pointer start, size_t len){ size_t i; for (i = 0; i < len; i++) printf(”%p\t0x%.2x\n",start+i, start[i]); printf("\n"); } typedef unsigned char *pointer; void show_bytes(pointer start, size_t len){ size_t i; for (i = 0; i < len; i++) printf(”%p\t0x%.2x\n",start+i, start[i]); printf("\n"); }

Carnegie Mellon 31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition show_bytes Execution Example int a = 15213; printf("int a = 15213;\n"); show_bytes((pointer) &a, sizeof(int)); int a = 15213; printf("int a = 15213;\n"); show_bytes((pointer) &a, sizeof(int)); Result (Linux x86-64): int a = 15213; 0x7fffb7f71dbc6d 0x7fffb7f71dbd3b 0x7fffb7f71dbe00 0x7fffb7f71dbf00 int a = 15213; 0x7fffb7f71dbc6d 0x7fffb7f71dbd3b 0x7fffb7f71dbe00 0x7fffb7f71dbf00

Carnegie Mellon 32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Representing Pointers Different compilers & machines assign different locations to objects Even get different results each time run program int B = ; int *P = &B; int B = ; int *P = &B; x86-64SunIA32 EF FF FB 2C AC 28 F5 FF 3C 1B FE 82 FD 7F 00

Carnegie Mellon 33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition char S[6] = "18213"; Representing Strings Strings in C  Represented by array of characters  Each character encoded in ASCII format  Standard 7-bit encoding of character set  Character “0” has code 0x30 –Digit i has code 0x30+i  String should be null-terminated  Final character = 0 Compatibility  Byte ordering not an issue IA32Sun

Carnegie Mellon 34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Integer C Puzzles x < 0  ((x*2) < 0) ux >= 0 x & 7 == 7  (x<<30) < 0 ux > -1 x > y  -x < -y x * x >= 0 x > 0 && y > 0  x + y > 0 x >= 0  -x <= 0 x = 0 (x|-x)>>31 == -1 ux >> 3 == ux/8 x >> 3 == x/8 x & (x-1) != 0 int x = foo(); int y = bar(); unsigned ux = x; unsigned uy = y; Initialization

Carnegie Mellon 35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Application of Boolean Algebra Applied to Digital Systems by Claude Shannon  1937 MIT Master’s Thesis  Reason about networks of relay switches  Encode closed switch as 1, open switch as 0 A ~A ~B B Connection when A&~B | ~A&B A&~B ~A&B = A^B