Ultra-cold Neutron Fundamental Physics at LANSCE Alexander Saunders Los Alamos National Laboratory Neutron Lifetime Beta Decay Correlations Beta Decay.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Neutron Lifetime Review: Status and future J. David Bowman Oak Ridge National Laboratory The 4th International Workshop on the CKM Unitarity Triangle December.
Solid Oxygen based Ultra-Cold Neutron Source
The Neutron Alphabet Exploring the properties of fundamental interactions with cold neutrons Hartmut Abele.
Chris Parkes University of Manchester Part VI Concluding Remarks 1)Other flavour physics / CPV searches 2)Overall Constraints on CKM Triangle.
IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech)
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
Hartmut Abele Knoxville, 8 June 2006 Neutron Decay Correlation Experiments.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
A Muon Veto for the Ultra-Cold Neutron Asymmetry Experiment Vince Bagnulo LANL Symposium 2006 Outline ● UCNA Experiment ● Muon background ● Proposed Veto.
A Muon Veto for the Ultra Cold Neutron Asymmetry Experiment Vince Bagnulo with Dr. Jeff Martin Electrons Ultra Cold Neutrons Cosmic Ray Muons Protons Pions.
The Beta-Asymmetry in Neutron Decay Jeffery W. Martin W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA for the.
Electron Backscattering Jeff Martin University of Winnipeg Outline: Motivation Experimental Setup Results and Comparisons See also: nucl-ex/ Phys.
UCNA specs – JWM 9/4/7 Proton beam energy = 800 MeV Peak proton current = 40 uA Duty cycle = 1/10 (1 sec on, 10 sec off) Therefore time-averaged current.
UCN beta decay Dan Melconian University of Washington.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
R. D. Foster, C. R. Gould, D. G. Haase, J. H. Kelley, D. M. Markoff, (North Carolina State University and TUNL), W. Tornow (Duke University and TUNL) Supported.
UCN (Ultracold Neutrons) Jeff Martin Outline What is a UCN? Interactions of UCN How to make UCN Fun things to do with UCN.
Accurate  Spectroscopy for Ultracold Neutrons Jeff Martin University of Winnipeg See also: J.W. Martin et al, Phys. Rev. C (2006) J.W. Martin.
1 Neutron Electric Dipole Moment Experiment Jen-Chieh Peng International Workshop on “High Energy Physics in the LHC Era” Valparaiso, Chile, December 11-15,
Helium 3 Neutron Precision Polarimetry CHRISTOPHER CRAWFORD, ROEL FLORES, CHRISTOPHER MENARD*, ELISE MARTIN, University of Kentucky *present address: Washington.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
FFAG Fixed Field Alternating Gradient synchrotrons, FFAGs, combine some of the main advantages of both cyclotrons and synchrotrons:  Fixed magnetic field.
Electric Dipole Moment of Neutron and Neutrinos
1/30Peter Fierlinger FERMILAB Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.
Ultracold Neutrons as Probes for Neutron-Antineutron Oscillations A.R.Young NCState University.
Ultra-Cold Neutrons: From neV to TeV What are UCN? (how cold?) How to produce UCN? – Conventional reactor sources – New “superthermal” sources Experiments.
An Ultra-Cold Neutron Source at the NCState Pulstar Reactor A.R. Young NCState University.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
Looking Through The Mirror: Parity Violation in the Future M.J. Ramsey-Musolf + many students, post- docs, collaborators, and colleagues.
The ISIS strong focusing synchrotron also at the Rutherford Appleton Laboratory. Note that ISIS occupies the same hall as NIMROD used to and re- uses some.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Ultracold neutrons and neutron decay Oliver Zimmer ILL Grenoble / TU München 19th Int. IUPAP Conf. On Few-Body Problems in Physics Bonn, 14 July 2008.
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Precision measurement of the neutron β-asymmetry A with spin-polarized ultracold neutrons B.W. Filippone, K.P. Hickerson, T.M. Ito, J. Liu, J.W. Martin,
The Nab Experiment Christopher Crawford DNP Fall Meeting, Newport Beach, CA University of Kentucky.
UCN magnetic storage and neutron lifetime V.F.Ezhov Petersburg Nuclear Physics Institute, Gatchina, Russia. (ITEP )
DOE 2/11/05 #1 EDM R&D Progress Steve Lamoreaux, Los Alamos Co-spokesperson for the EDM Project for presentation to The Department of Energy Cost & Schedule.
The aSPECT collaboration: Institut für Physik, Universität Mainz, Germany: F. Ayala Guardia, M. Borg, F. Glück, W. Heil, G. Konrad, N. Luquero Llopis,
1 How Can We Get More Neutrons? Upgrade Paths for the EDM Geoff Greene University of Tennessee /Oak Ridge National Laboratory Oct 2006.
Particle Physics with Slow Neutrons ILNGS Summer Institute, September 2005Torsten Soldner Particle Physics with Slow Neutrons I: Neutrons in the Standard.
Collab_NSAC 4/2/03 #1 EDMEDM Martin Cooper, Los Alamos Co-spokesperson for the EDM Project for presentation to EDM Collaboration Meeting Los Alamos, NM.
Statistical and systematic uncertainties in a and A J. David Bowman SNS FPNB Magnet Meeting North Carolina State University Jan. 8, 2006.
The Lineage of Nuclear Polarization Instrumentation Often Leads Through Madison Thomas B. Clegg University of North Carolina at Chapel Hill and Triangle.
Contents Introduction (motivation of precise measurements of neutron lifetime, history of experimental accuracy improvement). a. Result of neutron lifetime.
EDMEDM LANL Review of EDM Cost and Schedule Jan Boissevain, P-25 February 11, 2005, Los Alamos National Laboratory EDM Reference Design Tour of the Reference.
First Results from the UCNA Experiment B. PlasterLANL 2008 Brad Plaster, University of Kentucky LANL P-25 — November 5, 2008 Leah Broussard (Duke/TUNL)
Run Time, Mott-Schwinger, Systematics, Run plan David Bowman NPDGamma Collaboration Meeting 10/15/2010.
Hartmut Abele, University of Heidelberg 1 4. Correlation D and R measurements in  - decay Electron Neutrino Neutron Spin D Electron Neutron Spin R.
1/30Peter FierlingerStanford, Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.
Mesure du moment électrique dipolaire du neutron Oscar Naviliat-Cuncic LPC-Caen et Université de Caen Basse-Normandie Journée de la division Champs et.
The Science Program at the Los Alamos Ultra-cold Neutron Source Alexander Saunders Los Alamos National Lab 3 rd PSI Workshop Sep LA-UR
R&D Plan on Light Collection Takeyasu Ito Los Alamos National Laboratory.
Ultracold neutrons from He-II for a neutron lifetime experiment Oliver Zimmer Institut Laue Langevin Grenoble PSI2013, Villigen, 12 September 2013.
Ultra-Cold Neutron Group in Kellogg Lab - Neutron Electric Dipole Moment (EDM) Experiment - Search for new CP violation - Neutron Decay - Precision measurements.
Chris Parkes University of Manchester Part VI Concluding Remarks 1)Other flavour physics / CPV searches 2)Overall Constraints on CKM Triangle.
Jeff Martin (U. Winnipeg) Collaborators: J.D. Bowman, J. Birchall, L. Buchmann, L. Clarke, C. Davis, B.W. Filippone, M. Gericke, R. Golub, K. Hatanaka,
An Ultracold Neutron Source for TRIUMF
An Ultracold Neutron Source for TRIUMF 1. UCN interactions 2. UCN physics experiments 3. Source work at RCNP and TRIUMF 4. CFI, relationship, collaboration,
Measurement of the neutron lifetime with a Magneto Gravitational trap
UCN transport and NN experiments
HOPE – a magnetic UCN trap to measure the neutron lifetime
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
An Ultracold Neutron Source for TRIUMF
University of Manchester
Kellogg Radiation Lab, Caltech Pasadena, CA
R. Young, M. Makela, G. Muhrer, C. Morris, A. Saunders
Weak Interactions in the Nucleus II
neutron lifetime experiments
Presentation transcript:

Ultra-cold Neutron Fundamental Physics at LANSCE Alexander Saunders Los Alamos National Laboratory Neutron Lifetime Beta Decay Correlations Beta Decay Theory

Outline Introduction: why neutron beta decay allows search for physics beyond the Standard Model Ultra-cold neutrons UCNA experiment: progress and goals UCN Lifetime experiment prospects A UCN user facility at LANSCE The UCN effort world wide

Probing Physics Beyond the Standard Model Through Neutron Beta Decay Neutron beta decay as a probe for physics beyond the standard model –Quark mixing –Unitarity sum rule violated? d s d u d u d u np V ud V us K  Neutron decay Kaon decay |V ud | 2 + |V us | 2 + |V ub | 2 = 1 0

Probing Physics Beyond the Standard Model Through Neutron Beta Decay Neutron beta decay as a probe for physics beyond the standard model –Quark mixing in standard model –Unitarity sum rule violated? d s d u d u d u np V ud V us K  Neutron decay Kaon decay Next level of reality? |V ud | 2 + |V us | 2 + |V ub | 2 ≠ 1 0 ?

Neutron Decay and Unitarity Unitarity,, (or lack thereof) of CKM matrix tests existence of further quark generations and possible new physics (eg. Supersymmetry) eg. |V ud | 2 + |V us | 2 + |V ub | 2 = 1 B. W. Filippone

CKM Summary: New V us &  n ? New  n !! UCNA M. Ramsey-Musolf

Neutron  -Decay gives G A and G V Measuring A and neutron lifetime G F from muon decay CKM unitarity gives V ud a = electron neutrino correlation A = beta asymmetry B = neutrino asymmetry D = triple correlation (T-violating) b = Fierz interference term Jackson et al

Contribution to the V ud uncertainty Contribution  V ud (10 -4 ) RR 1.1 CC 1.5 RR 1.9 total2.7 0+ 0+0+ 0+ Contribution  V ud (10 -4 )  n (  n = 0.8 s) 4 (  A/A = 0.6%) 12 RR 2 total13 neutron Marciano and Sirlin, PRL 96, (2006)

Principle of the A-coefficient Measurement B field Detector 1Detector 2 Polarized neutronDecay electron (End point energy = 782 keV) n e  dW=[1+  PAcos  ]d  (E)

What is an Ultracold Neutron (UCN)? UCN can be stored in material bottles for 100s of seconds and piped around corners Typical velocities (0-8 m/s), V (En neV) Wavelengths > 50 nm 100% Polarizable with magnetic fields – m n B=60 neV/T mgh = 102 neV, h=1 meter Lifetime < 1000 seconds ~ Bottle Lifetime kT<4mK

UCN can also be essentially 100 percent polarized  100% polarization, provided v UCN is low enough UCNs provide a remarkable tool for studying neutron beta decay: 100% polarization and no source-related backgrounds

UCN sources, Solid, LHe, Doppler E CN E UCN phonon n nnn n n Classic Doppler Source New “Superthermal” UCN sources utilize phonon scattering. Both liquid and solid media are being used. 1-2 ucn/cc What makes a good superthermal UCN source? Low neutron absorption High single phonon energy Light atoms Weak crystal

Prototype LANSCE UCN Source Liquid N 2 Be reflector Solid D 2 77 K poly Tungsten Target 58 Ni coated stainless guide UCN Detector Flapper valve LHe SS UCN Bottle Beam detector UCN guide Cryostat UCN bottle

LANSCE Area-B UCN Source 800 MeV proton beam hits a tungsten target. Spallation neutrons interact with various parts of the source. >2 MeV neutrons undergo n-2n reactions in Be. Neutron thermalize in Graphite, Be, poly and solid deuterium. Cold neutrons scatter in the solid deuterium to ultracold state. UCN valve to increase source lifetime Warm poly added in 2007, yellow

UCNA Experiment — Apparatus Neutron Absorber Field Expansion Region

UCNA Experiment — General Approach Neutron Polarization –UCN (can produce >99% polarization with 7T magnetic field) –Diamond-like carbon coated neutron guide (low depolarization) Background –Pulsed UCN source –MWPC+Plastic scintillator Electron backscattering –MWPC+Plastic scintillator Fiducial volume selection –MWPC Detector Characterization –Off-line calibration system –Larger light collection Novel features: UCN from pulsed spallation source MWPC + plastic scintillator as  detector Goal: 0.2% measurement of A (  A/A = 0.2%)

UCNA Apparatus in LANSCE Area B

UCNA Results of 2007 Cycle ~50 hours of DAQ 0.8 M decays Signal/BG = 20 4% uncertainty Published 1/2009

2007 Systematic Uncertainties

Example: Backscattering

2008 Data run: M decays One of three data periods

A Correlation history UCNA 2007 PDG Value w/ 2.3x inflation

Neutron lifetime measurement using UCNs in magnetic trap Recent measurement disagrees with accepted value by >6 sigma Our Goal: independent 1 second measurement (0.1%) New experiment design eliminates leading error of previous experiments: material wall interactions Design and initial procurement supported by LANL LDRD-DR funding Now in detailed design and procurement phase UCNs from source enter vertically UCN Trap Beta Detectors Guide Field Coils 1 meter 1 s uncertainty, 7 s discrepancy

Lifetime Experiment Goals and Progress Construction underway First measurement w/ prototype in 2010

The future: a UCN User Facility at LANSCE Fundamental physics with UCN in the U.S. –1995: about 5 active US faculty and staff –2009: 44 active US faculty and staff –7 current projects (5 based in the US) UCN Sources in US –Around 1995, only source in world of extracted UCN for experiments – Steyerl rotor at ILL –1995, superthermal LHe source development began at NIST for dedicated lifetime experiment –no extracted UCN capability –1998, SD2 source development began at LANL –2004, first tests of production SD2 source at LANL –2005, SD2 source development began at PULSTAR: much smaller than LANL source; first tests expected in 2010 –2007, superthermal LHe source development began at SNS for dedicated EDM experiment –no extracted UCN capability 2009, LANL source remains the only, operational source for extracted UCN in the US

Capabilities of LANSCE UCN Source Test Beam

Test beam port available in parallel w/ UCNA UCN Source

Possible Experiments for User Facility Neutron EDM experiment engineering and optimization (nEDM collaboration) Neutron beta decay measurements –Neutron lifetime (Saunders et al.) –Beta asymmetry measurements (UCNb, abBA, UCNB) Short ranged forces and quantum gravity (Baessler, NIST) Neutron interactions with surfaces and solids (Korobkina) NNbar development (NNbar collaboration) UCN source technology development (Liu et al.)

World’s UCN Projects SourceTypeEc (neV)  UCN (UCN/cm3) (experiment) StatusPurpose LANLSpallation/D OperatingUCNA/ Users ILLReactor/ turbine 25040Operatingn-EDM/ Users PulstarReactor/D Constructio n Users PSISpallation/D ,000Constructio n n-EDM TRIUMFSpallation/ HE-II 21010,000Planningn-EDM/ Users MunichReactor/D225010,000R&DGravity SNSn beam/HE- II R&Dn-EDM

J. Martin

nEDM Storage Time at LANSCE Area B New nEDM Storage apparatus Switcher Pre-polarizer UCN Detectors Previous data Vacuum enclosure Storage cell UCN from SD 2 Source Goal: 20 K 100K300K 400s

Summary Ultra-cold neutrons provide a unique tool for studying fundamental weak nuclear interactions and searching for physics beyond the standard model UCNA experiment, in progress, promises world’s best measurement of A correlation parameter Neutron lifetime experiment will break new ground UCN facilities are operating or under construction world wide to exploit this growing field

UCNA Collaboration R. W. Pattie, Jr.R. W. Pattie, Jr., 1,2 J. Anaya, 3 H. O. Back, 1,2 J. G. Boissevain, 3 T. J. Bowles, 3 L. J. Broussard, 2,4 R. Carr, 5 D. J. Clark, 3 S. Currie, 3 S. Du, 1 B. W. Filippone, 5 P. Geltenbort, 6 A. García, 7 A. Hawari, 8 K. P. Hickerson, 5 R. Hill, 3 M. Hino, 9 S. A. Hoedl, 7,10 G. E. Hogan, 3 A. T. Holley, 1 T. M. Ito, 3,5 T. Kawai, 9 K. Kirch, 3 S. Kitagaki, 11 S. K. Lamoreaux, 3 C.-Y. Liu, 10 J. Liu, 5 M. Makela, 3,12 R. R. Mammei, 12 J. W. Martin, 5,13 D. Melconian, 7,14 N. Meier, 1 M. P. Mendenhall, 5 C. L. Morris, 3 R. Mortensen, 3 A. Pichlmaier, 3 M. L. Pitt, 12 B. Plaster, 5,15 J. C. Ramsey, 3 R. Rios, 3,16 K. Sabourov, 1 A. L. Sallaska, 7 A. Saunders, 3 R. Schmid, 5 S. Seestrom, 3 C. Servicky, 1 S. K. L. Sjue, 7 D. Smith, 1 W. E. Sondheim, 3 E. Tatar, 16 W. Teasdale, 3 C. Terai, 1 B. Tipton, 5 M. Utsuro, 9 R. B. Vogelaar, 12 B. W. Wehring, 8 Y. P. Xu, 1 A. R. Young, 1,2 and J. Yuan 5J. AnayaH. O. BackJ. G. BoissevainT. J. BowlesL. J. BroussardR. CarrD. J. ClarkS. CurrieS. DuB. W. FilipponeP. GeltenbortA. GarcíaA. HawariK. P. HickersonR. HillM. HinoS. A. Hoedl G. E. HoganA. T. HolleyT. M. ItoT. KawaiK. KirchS. KitagakiS. K. LamoreauxC.-Y. LiuJ. LiuM. MakelaR. R. MammeiJ. W. MartinD. MelconianN. MeierM. P. MendenhallC. L. MorrisR. MortensenA. PichlmaierM. L. PittB. PlasterJ. C. RamseyR. RiosK. SabourovA. L. SallaskaA. SaundersR. SchmidS. SeestromC. ServickyS. K. L. SjueD. SmithW. E. SondheimE. TatarW. TeasdaleC. TeraiB. TiptonM. UtsuroR. B. VogelaarB. W. WehringY. P. XuA. R. YoungJ. Yuan 1Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA 2Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA 3Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 4Department of Physics, Duke University, Durham, North Carolina 27708, USA 5W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA 6Institut Laue-Langevin, Grenoble Cedex 9, France 7Physics Department, University of Washington, Seattle, Washington 98195, USA 8Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA 9Research Reactor Institute, Kyoto University, Kumatori, Osaka, , Japan 10Physics Department, Princeton University, Princeton, New Jersey 08544, USA 11Tohoku University, Sendai , Japan 12Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA 13Department of Physics, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada 14Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA 15Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA 16Department of Physics, Idaho State University, Pocatello, Idaho 83209, USA