Selma Conforti Frédéric Dulucq Mowafak El Berni Christophe de La Taille Gisèle Martin-Chassard Wei Wei *

Slides:



Advertisements
Similar presentations
Jeudi 19 février 2009 Status of SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La.
Advertisements

SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
The NO A APD Readout Chip Tom Zimmerman Fermilab May 19, 2006.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
1 H-Cal front-end ASIC Status LAL Orsay J. Fleury, C. de la Taille, G. Martin, L. Raux.
U niversity of S cience and T echnology of C hina Design for Distributed Scheme of WCDA Readout Electronics CAO Zhe University of Science and Technology.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
PMF: front end board for the ATLAS Luminometer ALFA TWEPP 2008 – 19 th September 2008 Parallel Session B6 – Programmable logic, boards, crates and systems.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
Large area photodetection for Water Cerenkov detectors PMm 2 proposal: Front End Electronics MAROC ASIC Pierre BARRILLON, Sylvie BLIN, Jean-Eric CAMPAGNE,
ASIC development foreseen at IHEP/ORSAY C. de La Taille.
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Organization for Micro-Electronics desiGn and Applications HARDROC 3 for SDHCAL OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
Slide 1Turisini M. Frontend Electronics M.Turisini, E. Cisbani, P. Musico CLAS12 RICH Technical Review, 2013 June Requirements 2.Description of.
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
HaRDROC performance IN2P3/LAL+IPNL+LLR R. GAGLIONE, I. LAKTINEH, H. MATHEZ IN2P3/IPNL LYON M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD,
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
June 13rd, 2008 HARDROC2. June 13rd, 2008 European DHCAL meeting, NSM 2 HaRDROC1 architecture Variable gain (6bits) current preamps (50ohm input) One.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
CSNSM SPACIROC S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu.
Omega Users 2/07/2009 Short Status Report ANR-06-BLAN-0186 (LAL, IPNO, LAPP and Photonis till March 09) J.E Campagne project leader.
1 D. BRETON 1, L.LETERRIER 2, V.TOCUT 1, Ph. VALLERAND 2 (1) LAL ORSAY - France (2) LPC CAEN - France Super Nemo Absolute Time Stamper A high resolution.
Week 22: Schematic Week 23-Week 27: Routing Gerber files have been available since 9th July 1st prototype: – PCB manufacturer: supervised by KIT – Cabling:
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
SPIROC ADC measurements S. Callier, F. Dulucq, C. de La Taille, M. Faucci, R. Poeschl, L. Raux, J. Rouenne, V. Vandenbussche.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Tuesday, 20 May 2003OPERA Collaboration Meeting - Gran Sasso1 Status of front-end electronics for the OPERA Target Tracker LAL Orsay S.BONDIL, J. BOUCROT,
1 PARISROC2 ADC Measurements A. EL BERNI 28/05/2010.
Status of front-end electronics for the OPERA Target Tracker
DAQ ACQUISITION FOR THE dE/dX DETECTOR
STATUS OF SPIROC measurement
Front-end Electronic for a neutrino telescope : a new ASIC SCOTT
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
CTA-LST meeting February 2015
SPIROC Status : Last release, “SPIROC 2c”
HR3 status.
LHAASO Electronics developments
R&D activity dedicated to the VFE of the Si-W Ecal
ETD meeting Electronic design for the barrel : Front end chip and TDC
PARISROC Photomultiplier Array Integrated in SiGe Read Out Chip
R&D on large photodetectors and readout electronics FJPPL KEK/Orsay JE Campagne, S. Conforti, F. Dulucq, C. de La Taille, G. Martin-Chassard,, A.
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
Multi-Anode ReadOut Chip for MaPMTs: MAROC3 MEASUREMENTS
TDC at OMEGA I will talk about SPACIROC asic
EUDET – LPC- Clermont VFE Electronics
Status of n-XYTER read-out chain at GSI
02 / 02 / HGCAL - Calice Workshop
SPIROC Status : Last developments for SPIROC
Christophe de La Taille * Gisèle Martin-Chassard *
SKIROC status Calice meeting – Kobe – 10/05/2007.
Status of SPIROC: Next generation of SPIROC
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
HARDROC STATUS 17 mar 2008.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Stefan Ritt Paul Scherrer Institute, Switzerland
The ATLAS LAr. Calibration board K. Jakobs, U. Schaefer, D. Schroff
Presented by T. Suomijärvi
TOF read-out for high resolution timing
10/07/ /07/2019.
ASIC PMm2 08/02/2008.
ASIC PMm2 Digital part Frédéric DULUCQ 08/02/2008.
Presentation transcript:

Selma Conforti Frédéric Dulucq Mowafak El Berni Christophe de La Taille Gisèle Martin-Chassard Wei Wei * PARISROC Photomultiplier ARray Integrated in Sige Read Out Chip

TWEPP 09 Selma CONFORTI DI LORENZO 2 Contents  PMm 2 project  PARISROC description  Measurements  Conclusion

TWEPP 09 Selma CONFORTI DI LORENZO 3 PMm 2 Project (I)  PMm 2 : “Innovative electronics for array of photodetectors used in High Energy Physics and Astroparticles”.  R&D program funded by French national agency for research (ref. ANR-06-BLAN-0186) (LAL, IPNO, LAPP, ULB Bruxells and Photonis) ( )  Application : large water Cerenkov neutrino detectors (more generally: exp. with large number of PMTs)

TWEPP 09 Selma CONFORTI DI LORENZO 4 PMm 2 Project (II)  The project proposes to segment the very large surface of photodetection in macro pixels made of 16 photomultiplier tubes connected to an autonomous front-end electronics.  Replace large PMTs (20 inch) by groups of 16 smaller ones (12 inch) with central ASIC : –Independent channels –charge and time measurement –water-tight, common High Voltage –Only one wire out (DATA + VCC)  Target : –1pe efficiency –Triggerless acquisition –1ns time resolution –High granularity –scalability –Low cost: Common HV for 16 PMTs Common electronics for 16 PMTs Front-end closed to the PMTs array

TWEPP 09 Selma CONFORTI DI LORENZO 5 The general principle of PMm 2 project is that the ASIC and a FPGA manage the dialog between the PMTs and the surface controller Triggerless Front-End for Charge and Time digitization Common HV FPGA Integration Board 100m cable Power + DATA μControler FPGA 10 bars water pressure Power + decoding board LAPP TPC/IC 16 2m*2m 12’’PMTs ULB LAL/IPNO PMm 2 Project (III)

TWEPP 09 Selma CONFORTI DI LORENZO 6 PARISROC architecture Channel 16 Channel 1 16 charge inputs Variable Gain Amplifier (on 3 bits) Gain Correction (on 8bits) CRRC2 Slow Shaper (50, 100, 200 ns) Differential Fast Shaper (15ns) Discri 8/10/12 bits ADC Track & hold (Charge) Threshold variable delay OR 16 Trigger outputs Bandgap Vref SSH Vref FSH Vref SSH 1 OR output DAC 10 bits OR DAC 4 bits Track & hold (time) 8/10/12 bits ADC ADC Ramp 12 bits TDC Ramp 1 MUX charge output FIFO management Of SCA State machine 24 bits Timestamp Counter 32 register of 24 bits Readout Top Manager 32 register of 12 bits 12 bits ADC Counter Read/Write Start ramp SCA triggered DIGITAL PART Complete front-end chip with 16 independent auto trigger channels Technology : Austria-Micro-Systems (AMS) SiGe 0.35 μm Area:17 mm2 (5mm × 3.4mm) Power Supply: 3.3V Package: CQFP 160

TWEPP 09 Selma CONFORTI DI LORENZO 7 One channel analog part  Ramp TDC, Ramp ADC and 10-bit DAC common to all channels 50  ext PA 4-bit DAC Threshold 10-bit DAC Trigger Output Discri. x1 Ramp ADC Internal read Ramp TDC T&H FSH SSH VARIABLE DELAY Time output Charge output OR ext. Hold Auto-trig Adjustable and variable gain amplifier Variable Cin 1p;2p;4p Common adjustable value Variable Cf 1pF;0.5p; 0.25p;0.125p;…. 7fF Adjustable values for each channel to adjust PM gain variation on 8bits

TWEPP 09 Selma CONFORTI DI LORENZO 8 Digital part architecture(I) 16 channels managed independently 2 state machine dedicated to handle one channel: Write and Read SCA depth of 2 for time and charge measurement SCA management like FIFO 24bits Timestamp 10 MHz (1.67s) 32 registers of 24 bits to save coarse time for each depth of SCA 32 registers of 12 bits to store converted data: 16 charge and 16 fine time 40 MHz clock for ADC + SCA management 10 MHz clock for Timestamp + Readout

TWEPP 09 Selma CONFORTI DI LORENZO 9 Selective Read Out 4 modules: Acquisition, Conversion, Read Out and Top manager. Acquisition: Analog memory Conversion: Analog charge and time into 12 bits digital value saved in register (RAM) Read Out: RAM read out to an external system Digital part architecture(II) Only hit channels are readout Readout clock : 10 MHz Max Readout time (16 ch hit) : 100 us 52 bits of data / hit channel (all gray) Readout format (MSB first) : 4 bits channel # + 24 bits timestamp + 12 bits charge + 12 bits time

TWEPP 09 Selma CONFORTI DI LORENZO 10 Technology : AMS SiGe 0.35mm Size : 5mmX3.4mm Package : CQFP160 PARISROC layout ADC ramp 16 analogue channels Digital part TDC ramp BandgapDual DAC Bias + supply

TWEPP 09 Selma CONFORTI DI LORENZO 11 Measurements TEST BENCH 15ns 5ns input signal : Ii= 0 to 5mA 0 to 300 pe  0 to 50 pC PM’s Gain=10 6 (1pe=160 fC) TEST BOARD USB ASICFPGA PARISROC submitted in June 08 and received in December 08

TWEPP 09 Selma CONFORTI DI LORENZO 12 Analog measurements: Preamplifier 1.Preamplifier Meas.Sim RMS NOISE without USB cable 1mV 660uV 468uV Noise in pe without USB cable Vout(1pe)(G_pa=8)5mV5.43mV SNR without USB cable Input: 10pe G_pa=8 10mV/div 10ns/div Vmax_pa vs 1/Cf Gain adjustment linearity of 2% on 8 bit Linearity pa for 10 pe input signal Residuals in %-2.5 <Res% <1.35 Gain uniformity for all channels (Vmax_pa vs Channels; CF var; Cin=4pF) ; 100 pe input. PA_GAINMean(mV)Rms(%) High speed : tr=5ns

TWEPP 09 Selma CONFORTI DI LORENZO Slow shaper (50ns) Meas.Sim RMS NOISE4mV2.3mV Noise in pe Vout(1pe)(G_pa=8)12mV19mV SNR38 G_pa = 8 Slow Shaper Held signal Slow shaper signal T&H signal Extra noise sources: - 10 MHz Clock : doubles the noise - Low frequency noise SSH Linearity better then 1% at high preamplifier gain.

TWEPP 09 Selma CONFORTI DI LORENZO Fast shaper (G_pa=8) Meas.Sim RMS NOISE2.5mV2.36mV Noise in pe Vout(1pe)(Gpa=8)30mV39mV SNR1216 Overlapped curves Trigger efficiency Pedestal spread: 1 UDAC (LSB DAC=1.78 mV) so of 0.06 pe. 10 pe input Spread: 0.4pe Fast shaper and discriminator Fast shaper Trigger Pedestal spread better than 0.1 pe.

TWEPP 09 Selma CONFORTI DI LORENZO 15 Trigger efficiency Trigger down to 100 fC and up to 5pC Noise 10 fC Limited to 10 σ due to discriminator coupling 50% Trig. Eff.

TWEPP 09 Selma CONFORTI DI LORENZO bit DAC Linearity Residuals(%) DAC1_Chip1-0.1 to 0.1 DAC2_Chip1-0.1 to 0.1 DAC1_LINEARITY_CHIP1 DAC2_LINEARITY_CHIP1 Linearity at 0.1%

TWEPP 09 Selma CONFORTI DI LORENZO 17 Internal Wilkinson ADC (I) DAC=500=1.4523V Number of acquisitions: bit ADC (LSB=269μV) ADC_UNITS=1961 ΔADC_units=5

TWEPP 09 Selma CONFORTI DI LORENZO 18 Internal Wilkinson ADC (II) The ADC is suited to a multichannel conversion Very good uniformity and linearity Uniformity of 10 bit Wilkinson ADC 16 channels superimposed! Linearity at 1% of 12 bit Wilkinson ADC

TWEPP 09 Selma CONFORTI DI LORENZO 19 Overall behavior (10 bit ADC) Complete chain: Autotrigger + T&H + Internal ADC Linearity : 1% ; Noise 6 UADC (10 bit LSB=1.06mV)

TWEPP 09 Selma CONFORTI DI LORENZO 20 Measurement with PMT [B.Genolini IPNO] SPE spectrum with 10 inch PMT X - Complete chain : outotrigger + 10 bit internal ADC Time measurement with 2 inch PMT (XP3102) - Trigger output jitter : 600 ps

TWEPP 09 Selma CONFORTI DI LORENZO 21 Conclusion and next steps Good Overall performance of PARISROC. - Autotrigger and internal digitization; - Very good uniformity and linearity; - Extra noise source : 10 MHz Clock double the noise, Low frequency noise. A second version will be done in November Possible PMT gain increasing ; - Increase dynamic range with 2 gain ; - 8, 9, 10 bit ADC to reduce dead time ; - Double fine TAC. Chip being evaluated by several experiments: Memphys, DUSSEL, LENA……..

TWEPP 09 Selma CONFORTI DI LORENZO 22 BACKUP

TWEPP 09 Selma CONFORTI DI LORENZO 23 Costs

TWEPP 09 Selma CONFORTI DI LORENZO 24 Spiroc, Cf=0.4pF FIT Parisroc Noise

TWEPP 09 Selma CONFORTI DI LORENZO 25 Channel 1 Without ClockWith 40 MHz ClockWith 10 MHz and 40 MHz Clock Rms noise ssh 2.6mV Rms noise ssh 3mV Rms noise ssh 5mV Channel 9 With 10 MHz and 40 MHz Clock Rms noise ssh 10mV Rms noise is bigger with Clocks in particular with 10MHz Clock Clk noise is progressively smaller from Channel 1 to Channel 16 Clk noise is smaller with smaller preamplifier gains 0.4 mV of noise due to 40MHz Clock And 2mV noise due to 10MHz Clock Clock Noise

TWEPP 09 Selma CONFORTI DI LORENZO 26 Vmax=35mV (>1pe) Vmax=24mV Vmax=32mV Vmax=11mV Discriminator coupling

TWEPP 09 Selma CONFORTI DI LORENZO 27

TWEPP 09 Selma CONFORTI DI LORENZO 28 ADC DNL Preliminary results Differential non linearity (DNL): from -1 to 0.65 for the 10 bit ADC from -0.3 to 0.2 for the 8 bit ADC

TWEPP 09 Selma CONFORTI DI LORENZO 29 Fine TDC measurements

TWEPP 09 Selma CONFORTI DI LORENZO 30 Digital part Top manager module controls the 3 other ones: Acquisition, Conversion, Read out. When 1 or more channels are hit, it starts ADC conversion and then the readout of digitized data. The maximum cycle length is about 200 µs. During conversion and readout, acquisition is never stopped.