Strong EWSB in Top Quark Production at ILC Ivan Melo M. Gintner, I. Melo, B. Trpišová (University of Žilina) Praha, Mar 30, 2006.

Slides:



Advertisements
Similar presentations
Higgs Searches using Vector Boson Fusion. 2 Why a “Low Mass” Higgs (1) M H
Advertisements

Signatures of a new vector resonance from strongly interacting electroweak symmetry breaking M. Gintner, I. Melo, B. Trpišová University of Žilina Exotics.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
30 August 04Lorenzo Feligioni1 Searches for Techniparticles at DØ Lorenzo Feligioni Boston University for the DØ collaboration.
05/11/2006Prof. dr hab. Elżbieta Richter-Wąs Physics Program of the experiments at L arge H adron C ollider Lecture 5.
WW Scattering studies for the Future Linear Collider Andres F. Osorio Postgraduate student High Energy Physics Group.
Search for Anomalous tWb Couplings at D0, L. Li (Shanghai Jiao Tong University) SUSY 2012, August 16, Liang Li Shanghai Jiao Tong University Search.
1 Jet Energy Studies at  s=1 TeV e + e - Colliders: A First Look C.F. Berger & TGR 05/08.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
Dec. 17, 2004M. Garcia-Sciveres -- WW Scattering1 WW scattering Dec. 17 LBL ATLAS analysis meeting Motivation Theoretical Introduction Review of MC analyses.
Heavy charged gauge boson, W’, search at Hadron Colliders YuChul Yang (Kyungpook National University) (PPP9, NCU, Taiwan, June 04, 2011) June04, 2011,
Associated production of the Higgs boson and a single top quark in the littlest Higgs model at Large Hadron Collier Shuo Yang.
Little Higgs Dark Matter & Its Collider Signals ・ E. Asakawa, M. Asano, K. Fujii, T. Kusano, S. M., R. Sasaki, Y. Takubo, and H. Yamamoto, PRD 79, 2009.
P Spring 2003 L12Richard Kass The properties of the Z 0 For about ten years the Z 0 was studied in great detail at two accelerator complexes: LEP.
Contents 1. Introduction 2. Analysis 3. Results 4. Conclusion Constraint on new physics by measuring the HVV Couplings at e+e- LC In collaboration with.
1 A Preliminary Model Independent Study of the Reaction pp  qqWW  qq ℓ qq at CMS  Gianluca CERMINARA (SUMMER STUDENT)  MUON group.
2004 Xmas MeetingSarah Allwood WW Scattering at ATLAS.
New Vector Resonance as an Alternative to Higgs Boson (Strong EWSB)
10 October 2002Stefania Xella - RAL The next linear collider Stefania Xella Rutherford Appleton Laboratory.
1 Summary talk for ILC Physics Yasuhiro Okada (KEK) November 12, 2004 ACFA LC7, Taipei.
1 Determination of Dark Matter Properties in the Littlest Higgs Model with T-parity Masaki Asano (SOKENDAI) Collaborator: E. Asakawa (Meiji-gakuin), S.
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
Effective Lagrangians and Physics Beyond the Standard Model S. Dawson TASI06 Lecture 5.
C. K. MackayEPS 2003 Electroweak Physics and the Top Quark Mass at the LHC Kate Mackay University of Bristol On behalf of the Atlas & CMS Collaborations.
CDF Status and Prospects for Run 2 Tara Shears. Introduction Accelerator / detector overview: Tevatron overview CDF overview Luminosity Physics prospects.
Prospects of Discovering a New Massless Neutral Gauge Boson at the ILC E. Boos 1, V. Bunichev 1 and H.J. Schreiber 2 1 Institute of Nuclear Physics, Moscow.
Contributions from T Baltz, A Djouadi. The Higgs Sector of the LCC4 Point LCC4 Benchmark LCC4 point in A 0 Funnel region Benchmark point defined in cMSSM.
Electroweak physics at the LHC with ATLAS APS April 2003 Meeting – Philadelphia, PA Arthur M. Moraes University of Sheffield, UK (on behalf of the ATLAS.
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS Ryuichi Takashima Kyoto University of Education For the ATLAS Collaboration.
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
BESS Model Resonance in the pp W + W tt + X Channel at LHC M. Gintner, I. Melo, B. Trpišová University of Žilina Herlany, September 2006.
Status of LC Physics Study in Japan (II) Higgs/GRACE /Simulation study towards Higgs precision Measurement JAPAN LC Physics study group and KEK Minamitateya.
1 Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK.
Higgs boson pair production in new physics models at hadron, lepton, and photon colliders October Daisuke Harada (KEK) in collaboration.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
The Standard Model of the elementary particles and their interactions
Charged Higgs boson at the LHC 이강영 ( 건국대학교 연세대학교
March 2005Sarah Allwood WW Scattering at ATLAS Sarah Allwood University of Manchester IOP HEPP conference 2005, Dublin.
BESS Model Resonance in the pp W + W tt + X Channel at LHC M. Gintner, I. Melo, B. Trpišová University of Žilina CERN, Nov 1, 2006.
April 7, 2008 DIS UCL1 Tevatron results Heidi Schellman for the D0 and CDF Collaborations.
Vector boson scattering at CMS (LHC)
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
1 UCSD Meeting Calibration of High Pt Hadronic W Haifeng Pi 10/16/2007 Outline Introduction High Pt Hadronic W in TTbar and Higgs events Reconstruction.
Physics at FCC-ee The TLEP design study is now part and parcel of the FCC design study as FCC-ee Design principle and event rates When the Higgs boson.
Study of Diboson Physics with the ATLAS Detector at LHC Hai-Jun Yang University of Michigan (for the ATLAS Collaboration) APS April Meeting St. Louis,
New Strong LHC Rogerio Rosenfeld Instituto de Física Teórica UNESP  
Electroweak Physics Lecture 6
Vector Boson Fusion at CMS
Phenomenology of Twin Higgs Model
Xinyu Miao Department of Physics Univ. of Arizona 03/30/07
P Spring 2002 L13 Richard Kass The properties of the Z0
张仁友 (南昌, ) 中国科学技术大学粒子物理与技术中心
Phenomenology of Twin Higgs Model
Phenomenology of Twin Higgs Model
Xinyu Miao Department of Physics Univ. of Arizona 03/30/07
Strong Electroweak Symmetry Breaking from
浪漫之都大连欢迎您!. 浪漫之都大连欢迎您! Pair production of the scalars from the LRTH model Ma Wei Liaoning Normal University, Dalian Wei Ma, Chong-Xing Yue, Yong-Zhi.
Phenomenology of Twin Higgs Model
Physics in TDR number of pages 15 QCD                        15.2 proton structure
M. Ohlerich, A. Raspiareza, W. Lohmann DESY and MPI Munich
Monte-Carlo event generation for CEPC
Experimental and theoretical Group Torino + Moscow
Shuo Yang Associated production of the Higgs boson and
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS
Phenomenology of Vector Resonances from SEWSB at Future e+e- Colliders
Search for a New Vector Resonance in the pp WWtt+X Channel at LHC
Strong EWSB in Top Quark Production
Presentation transcript:

Strong EWSB in Top Quark Production at ILC Ivan Melo M. Gintner, I. Melo, B. Trpišová (University of Žilina) Praha, Mar 30, 2006

Motivation for new vector (ρ) resonances: Strong EW Symmetry Breaking (SEWSB) Vector resonance model ρ signal at future e + e - colliders e + e - → νν tt e + e - → t t Beamstrahlung Outline

EWSB: SU(2) L x U(1) Y → U(1) Q Weakly interacting models: - SUSY - Little Higgs Strongly interacting models: - Technicolor

Summary of the DCR Physics Group Strongly interacting Higgs sector: a priority !!!! - Summarize/update the scenario with resonances - See for new studies with the chiral approach

Chiral SB in QCD SU(2) L x SU(2) R → SU(2) V, vev ~ 90 MeV EWSB SU(2) L x SU(2) R → SU(2) V, vev ~ 246 GeV

W L W L → W L W L W L W L → t t t t → t t L = i g π M ρ /v (π - ∂ μ π + - π + ∂ μ π - ) ρ 0 μ + g t t γ μ t ρ 0 μ + g t t γ μ γ 5 t ρ 0 μ ttt π = W L

International Linear Collider: e+e- at 1 TeV ee ―› νν WWee ―› νν tt ee ―› ρ tt ―› WW tt ee ―› ρ tt ―› tt tt ee ―› WW ee ―› tt Large Hadron Collider: pp at 14 TeV pp ―› jj WWpp ―› jj tt pp ―› ρ tt ―› WW tt pp ―› ρ tt ―› tt tt pp ―› WW pp ―› tt

Chiral effective Lagrangian SU(2) L x SU(2) R global, SU(2) L x U(1) Y local L = L kin + L non.lin. σ model - a v 2 /4 Tr[(ω μ + i g v ρ μ. τ/2 ) 2 ] + L mass + L SM (W,Z) + b 1 ψ L i γ μ (u + ∂ μ – u + i g v ρ μ. τ/2 + u + i g’/6 Y μ ) u ψ L + b 2 ψ R P b i γ μ (u ∂ μ – u i g v ρ μ. τ/2 + u i g’/6 Y μ ) u + P b ψ R + λ 1 ψ L i γ μ u + A μ γ 5 u ψ L + λ 2 ψ R P λ i γ μ u A μ γ 5 u + P λ ψ R Standard Model with Higgs replaced with ρ BESS Our model g π = M ρ /(2 v g v ) g t = g v b 2 /4 + … M ρ ≈ √a v g v /2 t ω μ = [u + (∂ μ + i g’/2 Y μ τ 3 )u + u(∂ μ + i g W μ. τ/2)u + ]/2 A μ = [u + (∂ μ + i g’/2 Y μ τ 3 )u - u(∂ μ + i g W μ. τ/2)u + ]/2 u = exp( i π. τ /2v) ψ L = (t L,b L ) P b = diag(p 1,p 2 )

Unitarity constraints W L W L → W L W L, W L W L → t t, t t → t t Low energy constraints g π ≤ 1.75 (M ρ = 700 GeV) g t ≤ 1.7 (M ρ = 700 GeV) g v ≥ 10 → g π ≤ 0.2 M ρ (TeV) |b 2 – λ 2 | ≤ 0.04 → g t ≈ g v b 2 / 4 |b 1 – λ 1 | ≤ 0.01 → b 1 = 0

Partial (Γ―›WW) and total width Γ tot of ρ

Subset of fusion diagrams + approximations (Pythia) Full calculation of 66 diagrams at tree level (CompHEP)

Pythia vs CompHEP ρ (M = 700 GeV, Γ = 12.5 GeV, g’’ = 20, b 2 = 0.08) Before cuts √s (GeV) Pythia (fb) CompHEP (fb)

Backgrounds (Pythia) e + e - → tt γ e + e - → e + e - tt σ(0.8 TeV) = fb → 0.13 fb (0.20 fb ) σ(1.0 TeV) = fb → fb (0.16 fb)

R = |N(ρ) – N(no res.)| √(N(no res.)) ≈ S/√B > 5

e - e + → t t different from Higgs ! ρ (M= 700 GeV, b 2 =0.08, g’’=20) ρ x+y=560 nm z=0.40 mm n=2x10 10

Beamstrahlung Bunch parameters at IP: TESLA (500 GeV): N = 2 x σ x = 554 nm σ y = 5 nm σ z = 0.3 mm δ BS = 0.02 – 0.2 L = N 2 H d f/ 4πσ x σ y SLC (SLAC): N = 5 x σ x = 1500 nm σ y = 1500 nm σ z = 1.05 mm δ BS = pinch effect

e- e+ bunch b E(b)= Ne/(2π ε 0 L R 2 ) b R = 2 σ x = 2 σ y L is bunch length x yz y(z) = b 0 cos[(√3D y /2) 1/2 z/L] D y = 2N r e σ z /[γσ y (σ x +σ y )] Pinch effect Disruption

p e- r s F= eE(b) r= p/eE(b) P W = 2ke 2 γ 4 /(3r 2 ), v→c=1 ΔE = P W Δt = P W Δz δ BS = ∫ ΔE /E = 4N 2 γ r e 3 /[3 √3 σ z (σ x +σ y ) 2 ] = 2 – 20 % z L = N 2 H d f/ 4πσ x σ y D y = 2N r e σ z /[γσ y (σ x +σ y )]

Conclusions strong ρ-resonance model (modified BESS) e + e - → ννtt R ≤ 26 at CM energy = 1 TeV, L = 200 fb -1 e + e - → tt L scan = 1 fb -1