from SPARC to SPARX Luigi Palumbo SPARC Review Committee, January 9, 2008
MUR Strategic Research Programs SPARC (2003) (2003) R&D program towards high brightness e - beam & SASE-FEL experiment (FISR). SPARX (2005) (2005) R&D towards an X-ray FEL-SASE source (1.5 nm < < 13.5 nm ) (FIRB) (2007) Approval of SPARX Facility with start funding
LNF-INFN
INFN Installation completed … Compared with the original MIUR contract additional items: 1.Dazzler 2.Emittance-meter 3.Third Accelerating section 4.Second set of solenoids + steel mantel 5.RF Deflector 6.By-pass 7.X-Band RF Cavities 8.Seeding chamber and support + brand new electrical, fluids, cooling plants installed in the hall.
SPARC PLANNING SPARC MeV completed - Installation of 12 m SPARC undulator Beam 150 MeV - Slice emittance - SASE esperiment - Seeding HHG nm, - Installation of Thomson beam Line with interaction chamber - Timing and synchronization - X-band RF cavities - High repetition rate (100 Hz) S-band Guns 2009 SPARC-Lab Test Facility (PlasmonX, QFEL, Channeling …) SPARC - lab High Intensity Electron & Photon Beams Laboratory
e-beam meas. A. Cianchi e-beam sim. C. Ronsivalle exp. data analys A. Mostacci Laser System C. Vicario Linac R. Boni Cathodes L. Cultrera RF Contr. & Synch. A. Gallo Gun & RF Def. D. Alesini Magn&Power Supply G.Gatti Instr. diagn. D. Filippetto Controls, Data log E. Pace Vacuum A. Clozza Fluids L. Pellegrino Layout: S. Tomassini Convent. Safety S. Vescovi Radiation Prot. A. Esposito Area Safety Resp. G. Di Pirro National Resp. : L. Palumbo LNF Resp: M. Ferrario MI Resp: L. Serafini Roma2 Resp: L. Catani Lecce Resp: W. Perrone Roma1 Resp: M. Mattioli Scientific Coord: L. Serafini Commiss Coord. M. Ferrario Technical Coord: G. Di Pirro Mech. & Align: F. Sgamma RF-X Develop. B. Spataro PlasmonX C. Vaccarezza Timing A. Drago SPARCSPARC Photon beam E. Chiadroni Seeding L. Giannessi 2008 Steering Committee Review Committee Documentation M. Migliorati
S orgente P ulsata A uto-amplificata R adiazione X PROJECT
SPARX Goals SPARX workshops - ENEA CR Frascati ENEA CR Frascati INFN-LNF INFN-LNF INFN-LNF INFN-LNF Wavelength range : nm water window water window (~ 2.5 – 4.5 nm) (~ 2.5 – 4.5 nm) carbon window carbon window (~ 4.5 – 6.3 nm) (~ 4.5 – 6.3 nm)
Fs-dynamics Chemical Reactions CHEMISTRY Magnetic Nanostructure MATERIAL SCIENCE Energy Dissipation in Clusters PHYSICS Brightness Complex Solids PHYSICS Catalysis, Electrochemistry TECHNOLOGY Spectro-microscopy LIFE/Environment Coherence Time resolved imaging MATERIAL SCIENCE Biological systems LIFE SCIENCE Nanofabrication TECHNOLOGY Peak Power Clusters MATERIAL SCIENCE Athmospheric chemistry ENVIRONMENT Fusion Plasma TECHNOLOGY
SPARX general parameter list Energy (GeV) 1.2 ÷ 2.4 Current (kA) 1.0 ÷ 2.5 ε nx slice (μrad) 1 ε ny slice (μrad) 1 σ δ (%) 0.1 λ r (nm) 13.0 ÷ 1.5
3.5GeV (Xband)
SPARX (nm) SASE RADIATION
Flexible design SASE & Seeded configurations Seed source to improve coherence length with respect to SASE Extended use of higher order harmonics Short pulses (fs range) Extendable operation range to the sub-nm wavelengths (0.5 nm)
SPARX layout Linac 500 MeV BC2 IV Linac 150 MeV RF gun IV Linac 350 MeV Laser heater RFD BC1 Linac 1.2 GeV DL1 Linac 2.4 GeV DL1 DL2 IV 1.2 GeV 2.4 GeV
1.2 GeV 10 – 6 nm r [nm] r [nm]K gap [mm] o (E = 1 GeV)* nm 6 nm
2.4 GeV 6 – 1 nm r [nm] r [nm]K gap [mm] (E = 2 GeV) nm 1.9 nm
SEEDING & Harmonic Gen. Seed Source λ res λ res /n U - 1U - 2 e - beam
2.6 nm Spectrum
How to go to shorter wavelengths? Example: 0.5 nm Example: 0.5 nm 1)Use 3rd harmonics 2)Increase the beam 3.5 GeV 3) Shorter period undulator GeV 1) Waveguide X-band 2.4 GeV
Option for shorter : RF traveling wave undulator (TWU) High power (400 MW) X-band 11.4 GHz RF source SLAC SLED’ed system Many novel aspects, advantages Short u (1.5 mm) Large aperture (low wakes) Helical polarization (K=0.8) Period-to-period field balance easy Inexpensive access to sub-nm r Experimental test in 2008 RF RF TW undulator: beam counterpropagating in high power RF waveguide Preliminary design for UCLA-INFN TWU experiment at BNL ATF
Towards the femtosecond frontier: Extreme-low charge operation Extreme-low Q operation 1 nC —> 1 pC Very low n =0.06 mm-mrad Ultra-short beam, high I Velocity bunching at source Chicane bunching at 1 GeV 1 femtosecond rms bunch Advantages Wakes mitigated (CSR, undulator) Higher brightness beam (short L g ) Single spike X-ray FEL, more stable Time-scale of interest for probing electronic motion Idea applicable to SPARX, LCLS Simulation of SPARX e-beam current pulse
Site map
FACILITY TDR 2007 BUILD. PROJECT LONG TERM PROCUREMENT TUNNEL & BUILD. CONSTRUCTION SHORT TERM PROCUREMENT INSTALLATION SUB-SYSTEMS TEST COMMISSIONING R&D DEVELOP.
SPARX- Activity Plan – Start up Approval od Role & Responsabilities Complete Organization Chart (CTS) Layout Macchina Project Specificatios Machine Design Civil infrastructure design Cost estimate Planning Scientific case Up-date TDR