Dr. Grace F. Wang, Spring 2009 1 As shown in Ch2, the graphical solution procedure can be only used to solve linear programming problems involving two.

Slides:



Advertisements
Similar presentations
Chapter 5: Linear Programming: The Simplex Method
Advertisements

Lecture 3 Linear Programming: Tutorial Simplex Method
Operation Research Chapter 3 Simplex Method.
SIMPLEX METHOD FOR LP LP Model.
Chapter 1 Systems of Linear Equations
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
1 集合論 Chapter 3. 2 Chapter 3 Set Theory 3.1 Sets and Subsets A well-defined collection of objects (the set of outstanding people, outstanding is very.
自由進入及離開. 定義  長期 ─ 是指生產者能夠改變所有生產因素的情況。  自由進入及離開 ─ 是指公司能夠自由進入及離開市場而不受限 制。
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
Chapter 2 聯立線性方程式與矩陣 緒言 線性方程式組 (systems of linear equations) 出現 在多數線性模式 (linear model) 中。根據以往解 題的經驗,讀者們也許已發現方程式的解僅與 該方程式的係數有關,求解的過程也僅與係數 的運算有關,只要係數間的相關位置不改變,
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
JAVA 程式設計與資料結構 第十四章 Linked List. Introduction Linked List 的結構就是將物件排成一列, 有點像是 Array ,但是我們卻無法直接經 由 index 得到其中的物件 在 Linked List 中,每一個點我們稱之為 node ,第一個 node.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
第一章 演算法:效率、分析與量級 1.1演算法 1.2發展有效率演算法的重要性 1.3演算法的分析 1.4量級(Order)
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
: Ahoy, Pirates! ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11402: Ahoy, Pirates! 解題者:李重儀 解題日期: 2008 年 8 月 26 日 題意:有一個海盜島有 N 個海盜,他們的編號 (id)
公司加入市場的決定. 定義  平均成本 = 總成本 ÷ 生產數量 = 每一單位產量所耗的成本  平均固定成本 = 總固定成本 ÷ 生產數量  平均變動成本 = 總變動成本 ÷ 生產數量.
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
資料結構實習-一 參數傳遞.
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2008.
: Beautiful Numbers ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11472: Beautiful Numbers 解題者:邱經達 解題日期: 2011 年 5 月 5 日 題意: 若一個 N 進位的數用到該.
第 9 章 TSR 程式基本教練. 本章提要 TSR 程式 以熱鍵 (Hot key) 叫用 TSR 程式 Clock 中斷 int 08h 、 int 1ch DOS reentrant 的問題 有用的 TSR 程式.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
Chapter 6 線性規劃 緒言 如何在有限的經濟資源下進行最有效的調配與 選用,以求發揮資源的最高效能。此問題愈來 愈受到重視,也就是以最低的代價,獲取最大 的效益。 茲列舉如下: – 決定緊急設備與人員的地點,使反應時間最短化。 – 決定飛機、飛行員、地勤人員的飛航最佳日程安排。
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 2. Recurrence Relations (遞迴關係)
Chapter 10 m-way 搜尋樹與B-Tree
2005/7 Linear system-1 The Linear Equation System and Eliminations.
Cluster Analysis 目的 – 將資料分成幾個相異性最大的群組 基本問題 – 如何衡量事務之間的相似性 – 如何將相似的資料歸入同一群組 – 如何解釋群組的特性.
D Nagesh Kumar, IIScOptimization Methods: M3L4 1 Linear Programming Simplex method - II.
計數值抽樣計劃 使用 MIL-105D 表. 表 10-1 Sample Sizes Code Letters.
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
LINEAR PROGRAMMING SIMPLEX METHOD.
The Simplex algorithm.
Chapter 6 Linear Programming: The Simplex Method
The Two-Phase Simplex Method LI Xiao-lei. Preview When a basic feasible solution is not readily available, the two-phase simplex method may be used as.
8. Linear Programming (Simplex Method) Objectives: 1.Simplex Method- Standard Maximum problem 2. (i) Greedy Rule (ii) Ratio Test (iii) Pivot Operation.
Chapter 6 Sensitivity Analysis & Duality (敏感度分析 & 對偶)
1 Consider a system of linear equations.  The variables, or unknowns, are referred to as x 1, x 2, …, x n while the a ij ’s and b j ’s are constants.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1© 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Linear Programming: The Simplex Method.
4.7 Alternate Optimal Solutions
Business Mathematics MTH-367 Lecture 15. Chapter 11 The Simplex and Computer Solutions Methods continued.
 Minimization Problem  First Approach  Introduce the basis variable  To solve minimization problem we simple reverse the rule that is we select the.
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 4 The Simplex Algorithm( 單體法 ) and Goal Programming Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
Business Mathematics MTH-367 Lecture 16. Chapter 11 The Simplex and Computer Solutions Methods continued.
1 4.7 Alternate Optimal Solutions If an LP has more than one optimal solution, it has multiple optimal solutions ( 多重最佳解 ) or alternative optimal solutions(
Chapter 4 Linear Programming: The Simplex Method
ENGM 631 Optimization Ch. 4: Solving Linear Programs: The Simplex Method.
Presentation transcript:

Dr. Grace F. Wang, Spring As shown in Ch2, the graphical solution procedure can be only used to solve linear programming problems involving two decision variables. However, most linear programming problems are too large to be solved graphically, and an algebraic solution procedure must be employed. The most widely used algebraic procedure for solving linear programming problems is called the simplex method. 線性規劃之簡捷法 The Simplex Method of Linear Programming:

Dr. Grace F. Wang, Spring The simplex method is an iterative procedure ( 重複步驟 ) for moving from one basic feasible solution(extreme point) to another until the optimal solution is reached. Let’s use the example of the High Tech Industries ( 海德公司 ) on p.225 或英文第9版之中譯本 ( 以下簡稱中譯本 ) p.186 to illustrate the simplex method as follows:

Dr. Grace F. Wang, Spring § § (pp ) 1. Formulate the LP model for the High Tech problem in general form: X 1 = number of units of the Deskpro X 2 = number of units of the Portable Max 50X X 2 s.t. 3X 1 + 5X Assembly time X 2 20 Portable display 8X 1 + 5X Warehouse capacity X 1, X 2 0

Dr. Grace F. Wang, Spring Reserve for figure 5.1

Dr. Grace F. Wang, Spring Rewrite the LP model in the standard form: Max 50X X 2 + 0S 1 + 0S 2 + 0S 3 s.t. 3X 1 + 5X 2 + 1S 1 + 0S 2 + 0S 3 = 150 0X 1 + 1X 2 + 0S 1 + 1S 2 + 0S 3 = 20 8X 1 + 5X 2 + 0S 1 + 0S 2 + 1S 3 = 300 X 1, X 2, S 1, S 2, S 3 0 Return to slide 9 註:在此 model 中,每條限制式皆含有 basic variable ,意指該變數在本列之係數為 +1 , 而在其他列皆為 0 。

Dr. Grace F. Wang, Spring Set up the tableau form( 表格式 ): When a LP problem has a Max Objective Function with only = 0, its standard form and tableau form are the same; otherwise, they are not the same and the tableau form is developed in section 5.6 on p.242( 原文第十版 ). The purpose of tableau form is to provide an initial basic feasible solution as a starting point for the simplex method.

Dr. Grace F. Wang, Spring 假設 1 個線性規劃問題含 n 個變數及 m 個方程式 ( 限制式 ) , 當 n > m 時,無法解, ( 必須 n ≤ m) , ∴先令多餘的變數為零。 若令 X 2 =0 and S 1 =0 ,則可得一個 basic solution as shown on pp : X 1 = 50 S 2 = 20 S 3 = However, this is not a basic feasible solution because S 3 is negative. In a LP model, all variables must be non- negative ( ≥ 0).

Dr. Grace F. Wang, Spring For this example, the tableau form is the same as standard form, which consists of 5 variables and 3 linear equations, where n>m. We can find an initial basic feasible solution by setting the decision variables=0 and solve for the slack variables as follows: Let X 1 = 0 X 2 = 0 (n – m = 5 – 3 = 2) nonbasic variables (m = 3) basic variables We obtain This is a basic feasible solution but not an optimal solution since the O.F. value = 50(0) + 40(0) = 0. S 1 = 150 S 2 = 20 S 3 = 300

Dr. Grace F. Wang, Spring

10 4.Setting up the initial simplex tableau ( 起始的簡捷表 ) : C j = O.F. Coefficient for variable j b i = RHS value for constraint i a ij = Coefficient associated with variable j in constraint i Basis C B Z j C j - Z j C row A matrix b column Go to slide 4 variable

Dr. Grace F. Wang, Spring The set of current basic variables. CBCB ZjZj C j - Z j Basis Where The corresponding O.F. coefficient for each variable in the basis. The decrease in the value of the O.F. that will result if one unit of the variable in jth column is brought into the basis. The net change in the value of the O.F. that will result if one unit of the variable in jth column is brought into the basis. It’s called “The net evaluation row ”( 淨評估列 ).

Dr. Grace F. Wang, Spring Unit columns or Unit vectors ( 單位向量 ) X1X1 X2X2 S1S1 S 2 S3S3 BasisCBCB bibi S S S ZjZj C j - Z j (O.F. Value)

Dr. Grace F. Wang, Spring

Dr. Grace F. Wang, Spring To identify the pivot column, pivot row, and thus the pivot element, we apply the following criteria : (p.234) (1) Criterion for entering a new variable into the basis: - Examine the net-evaluation row, choose the variable that will cause the largest (C j – Z j ) value( 最大淨評估值 ). - In the case of a tie, choose the variable corresponding to the leftmost of the columns. (2) Criterion for removing a variable from the current basis (Minimum Ratio Test -- 最小比率檢定 ): - Compute the b i /a ij ratio for each a ij > 0. Then, choose the variable to remove that corresponds to the minimum ratio. - In the case of a tie, choose the variable corresponding to the uppermost of the rows. 5. Improve the solution:

Dr. Grace F. Wang, Spring X 1 X 2 S 1 S 2 S 3 bibi Basis C B b i a ij S /3=50 S S /8=37.50 ZjZj C j - Z j Min ratio pivot column( 樞紐行 ) pivot row ( 樞紐列 ) Max net evaluation Pivot element( 樞紐項 )

Dr. Grace F. Wang, Spring Our goal is to convert the pivot column in the A matrix into a unit column by using “Elementary Row Operations”( 基本的列運算法 ) --p Compute the next simplex tableau: Old Value New Value Pivot Column a 11 a 21 a 31 (1) 樞紐列 (Pivot row) 之計算: New pivot row = old pivot row / pivot element (2) 非樞紐列之計算 ( 若此列與 樞紐行 相交的值不等於零 ): New row = old row – 此列與樞紐行相交的值 × (New pivot row) Unit vector

Dr. Grace F. Wang, Spring (1) 樞紐列 (Pivot row) 之計算: New pivot row = old pivot row / pivot element old pivot row : new pivot row : 1 5/ /8 300/8=75/2 (2) 非樞紐列之計算 ( 若此列與樞紐行相交的值不等於零 ): New row = old row – 此列與樞紐行相交的值 × (New pivot row) old 1 st row : new 1 st row : 0 25/ /8 75/2 * * 150 – 3 (75/2)=75/2

Dr. Grace F. Wang, Spring Through all of computations as shown on p.236, we obtain the second simplex tableau below: (a better solution) Became a unit column Q:What is our goal toward this pivot column?

Dr. Grace F. Wang, Spring Since X 2 has the highest positive value in the (C j - Z j ) row, we repeat the procedure as taken in steps 5 ~ 6 to obtain the third simplex tableau as follows: 7. Continue to find a better solution:  Q : Can we improve the solution even more now?

Dr. Grace F. Wang, Spring Since there is no any positive value in the net- evaluation row now,this is the final tableau, which contains the optimal solution as follows: X 1 = 30 X 2 = 12 O.F. value = 1980 S 1 = 0 S 2 = 8 S 3 = 0 How do you interpret this solution?  See Figure 5.3 for the computer output, a summary of the simplex method is provided on p.241( 原文第 十版 )

Dr. Grace F. Wang, Spring The Computer Solution for The Hightech Industries Problem

Dr. Grace F. Wang, Spring Tableau Form: The General Case 一般情況下之表格式 ( pp ) ≥ ( 1 ) A LP model with “ ≥ ” constraints ( 2 ) A LP model with “ = ” constraints ( 3 ) A LP model with negative RHS values What if one or more constraint(s) of a LP model is(are) not “≤” or RHS(s) is(are) negative ? For example: § 5.6

Dr. Grace F. Wang, Spring ( 1 ) A LP model with “ ” constraints Max 50X X 2 s.t. 3X 1 + 5X X X 1 + 5X X1, X2 0 1X 1 + 1X 2 25 General Form Since Suppose that the management of High Tech Industries wanted to ensure that the total production for both models would be at least 25 units. Thus, the new model will be as follows:

Dr. Grace F. Wang, Spring Max 50X X 2 + 0S 1 + 0S 2 + 0S 3 + 0S 4 s.t. 3X 1 + 5X 2 + 1S 1 = 150 1X 2 + 1S 2 = 20 8X 1 + 5X 2 + 1S 3 = 300 1X 1 + 1X 2 - 1S 4 = 25 Standard Form X 1, X 2, S 1, S 2, S 3, S 4 0

Dr. Grace F. Wang, Spring Max 50X X 2 + 0S 1 + 0S 2 + 0S 3 + 0S 4 - Ma 4 s.t. 3X 1 + 5X 2 + 1S 1 = 150 1X 2 + 1S 2 = 20 8X 1 + 5X 2 + 1S 3 = 300 1X 1 + 1X 2 - 1S 4 + 1a 4 = 25 Tableau Form 由於第四個方程式缺少基本變數,我們需要加入一個人工變數 (Artificial Variable) 。若無此項,無法踏出第一步以產生 起始的簡捷表。

Dr. Grace F. Wang, Spring P.244 ~ 246 The Initial Simplex Tableau : Basis C B S1S1 S2S2 S3S3 a4a M ZjZj Cj - ZjCj - Zj X1X1 X2X2 S1S1 S2S2 S3S3 S4S4 a4a /3 = M - /8 = /1 = 25 -M -M M -M -25M 50+M 40+M M 0 - bibi - - - bibi a ij Max Min ( 代表第一個基本解 ) Pivot Column Phase I ( 第一階段 ) : Pivot Row

Dr. Grace F. Wang, Spring P.244 ~ 246 Basis C B S1S1 S2S2 S3S3 X1X ZjZj Cj - ZjCj - Zj X1X1 X2X2 S1S1 S2S2 S3S3 S4S4 a4a /3 = M /8 = M-50 - bibi - - - bibi a ij Max Min Phase II ( 第二階段 ) – 在 Basis 中不含人工變數之後 Pivot Column Pivot Row

Dr. Grace F. Wang, Spring P.244 ~ 246 Basis C B S1S1 S2S2 S4S4 X1X ZjZj Cj - ZjCj - Zj X1X1 X2X2 S 1 S 2 S 3 S / / / 2 (75/2) / (25/8) = / 1 = / / / 2 - 1 5/ / / 2 (75/2) / (8/5) = / / / /8 0 - bibi - - - bibi a ij Max Min

Dr. Grace F. Wang, Spring P.244 ~ 246 Basis C B X2X2 S2S2 S4S4 X1X ZjZj Cj - ZjCj - Zj X1X1 X2X2 S 1 S 2 S 3 S / / /25 1 3/ /25 0 2/ /25 0 5/ /5 0 26/ / /5 0 - bi Q : Is this the final simplex tableau ?

Dr. Grace F. Wang, Spring ( 2 ) A LP model with “ = ” constraints without basic variables For example, 6X 1 + 4X 2 – 5X 3 = 30 We would simply add an artificial variable a 1 to create a basic feasible solution in the initial simplex tableau. 6X 1 + 4X 2 – 5X 3 + 1a 1 = 30 Then, the simplex method proceeds exactly as before.

Dr. Grace F. Wang, Spring ( 3 ) A LP model with negative RHS values If X 2 X 1 – 5, then -X 1 + X 2 – 5 Thus, multiply by –1 to obtain X 1 – X 2  5 Then, X 1 – X 2 – S 1 = 5 If X 1 is not a basic variable of this constraints, we need to add an artificial variable a 1 as follows: X 1 – X 2 – S 1 +a 1 = 5

Dr. Grace F. Wang, Spring Solving a Minimization Problem (pp )§ 5.7 Min 2X 1 + 3X 2 s.t. 1X 1 ≥ 125 Demand for product A 1X 1 + 1X 2 ≥ 350 Total production 2X 1 + 1X 2 ≤ 600 Processing time X 1, X 2 ≥ 0 Max - 2X 1 - 3X 2 s.t. 1X 1 ≥ 125 Demand for product A 1X 1 + 1X 2 ≥ 350 Total production 2X 1 + 1X 2 ≤ 600 Processing time X 1, X 2 ≥ 0 To solve this problem using the simplex method, we first multiply the objective function by -1 to convert the minimization problem into the following equivalent maximization problem:

Dr. Grace F. Wang, Spring The final simplex tableau is shown on p.250. Max - 2X 1 - 3X 2 + 0S 1 + 0S 2 + 0S 3 – Ma 1 – Ma 2 s.t. 1X 1 - 1S 1 +1a 1 = 125 1X 1 + 1X 2 - 1S a 2 = 350 2X 1 + 1X 2 + 1S 3 = 600 X 1, X 2, S 1, S 2, S 3, a 1, a 2 ≥ 0 The tableau form for this problem is as follows:

Dr. Grace F. Wang, Spring X1X1 X2X2 S1S1 S 2 S3S3 BasisCBCB bibi x x s ZjZj C j - Z j Note: The value of O. F must be multiplied by -1 to obtain the value of the objective function for the original minimization problem. Thus, the minimum total cost of the optimal solution is $800.

Dr. Grace F. Wang, Spring § 5.8 Special Cases Infeasibility Unboundedness Alternative Optimal Solution Degeneracy

Dr. Grace F. Wang, Spring Infeasibility Infeasibility is detected in the simplex method when an artificial variable remains positive in the final tableau. n LP Formulation MAX 2 x x 2 MAX 2 x x 2 s. t. 4 x x 2 < 12 s. t. 4 x x 2 < 12 2 x 1 + x 2 > 8 2 x 1 + x 2 > 8 x 1, x 2 > 0 x 1, x 2 > 0

Dr. Grace F. Wang, Spring Example: Infeasibility Final Tableau

Dr. Grace F. Wang, Spring Example: Infeasibility In the previous slide we see that the tableau is the final tableau because all c j - z j < 0. However, an artificial variable is still positive, so the problem is infeasible.

Dr. Grace F. Wang, Spring Unboundedness A linear program has an unbounded solution if all entries in an entering column are non-positive. n LP Formulation MAX 2 x x 2 MAX 2 x x 2 s. t. 4 x x 2 > 12 s. t. 4 x x 2 > 12 2 x 1 + x 2 > 8 2 x 1 + x 2 > 8 x 1, x 2 > 0 x 1, x 2 > 0

Dr. Grace F. Wang, Spring Example: Unboundedness

Dr. Grace F. Wang, Spring Example: Unboundedness In the previous slide we see that c 4 - z 4 = 4 (is positive), but its column is all non-positive. This indicates that the problem is unbounded.

Dr. Grace F. Wang, Spring Alternative Optimal Solution A linear program has alternate optimal solutions if the final tableau has a c j - z j value equal to 0 for a non-basic variable. Final Tableau Final Tableau x 1 x 2 x 3 s 1 s 2 s 3 s 4 x 1 x 2 x 3 s 1 s 2 s 3 s 4 Basis c B Basis c B s s x x x x s s z j c j – z j c j – z j

Dr. Grace F. Wang, Spring Example: Alternative Optimal Solution In the previous slide we see that the optimal solution is: x 1 = 4, x 2 = 6, x 3 = 0, and z = 32 Note that x 3 is non-basic and its c 3 - z 3 = 0. This 0 indicates that if x 3 were increased, the value of the objective function would not change. Another optimal solution can be found by choosing x 3 as the entering variable and performing one iteration of the simplex method. The new tableau on the next slide shows an alternative optimal solution is: x 1 = 7, x 2 = 0, x 3 = 3, and z = 32

Dr. Grace F. Wang, Spring Example: Alternative Optimal Solution New Tableau x 1 x 2 x 3 s 1 s 2 s 3 s 4 Basis c B s x x s z j c j - z j

Dr. Grace F. Wang, Spring Degeneracy( 退化解 ) 假設海德公司之線性規劃模式修改如下: Max50x 1 +40x 2 s.t.

Dr. Grace F. Wang, Spring The simplex tableau after one iteration is as follows:

Dr. Grace F. Wang, Spring ` Tie

Dr. Grace F. Wang, Spring

Dr. Grace F. Wang, Spring Degeneracy( 退化解 ) A degenerate solution to a linear program is one in which at least one of the basic variables equals 0. This can occur at formulation or if there is a tie for the minimizing value in the ratio test to determine the leaving variable. When degeneracy occurs, an optimal solution may have been attained even though some c j – z j > 0. Thus, the condition that c j – z j < 0 is sufficient for optimality, but not necessary.

Dr. Grace F. Wang, Spring End of Chapter 5