Chapter 15 Association Between Variables Measured at the Interval-Ratio Level
Chapter Outline Introduction Scattergrams Regression and Prediction The Computation of a and b The Correlation Coefficient (Pearson’s r)
Chapter Outline Interpreting the Correlation Coefficient: r 2 The Correlation Matrix Testing Pearson’s r for Significance Interpreting Statistics: The Correlates of Crime
This Presentation Scattergrams Graphs that display relationships between two interval-ratio variables. The Regression Line Summarizes the linear relationship between X and Y. Predicts score on Y from score on X. Pearson’s r Preferred measure of association for two I-R variables.
Scattergrams Scattergrams have two dimensions: The X (independent) variable is arrayed along the horizontal axis. The Y (dependent) variable is arrayed along the vertical axis.
Scattergrams Each dot on a scattergram is a case. The dot is placed at the intersection of the case’s scores on X and Y.
Scattergra ms Shows the relationship between % College Educated (X) and Voter Turnout (Y) on election day for the 50 states.
Scattergrams Horizontal X axis - % of population of a state with a college education. Scores range from 15.3% to 34.6% and increase from left to right.
Scattergrams Vertical (Y) axis is voter turnout. Scores range from 44.1% to 70.4% and increase from bottom to top
Scattergrams: Regression Line A single straight line that comes as close as possible to all data points. Indicates strength and direction of the relationship.
Scattergrams: Strength of Regression Line The greater the extent to which dots are clustered around the regression line, the stronger the relationship. This relationship is weak to moderate in strength.
Scattergrams: Direction of Regression Line Positive: regression line rises left to right. Negative: regression line falls left to right. This a positive relationship: As % college educated increases, turnout increases.
Scattergrams Inspection of the scattergram should always be the first step in assessing the correlation between two I-R variables
The Regression Line: Formula This formula defines the regression line: Y = a + bX Where: Y = score on the dependent variable a = the Y intercept or the point where the regression line crosses the Y axis. b = the slope of the regression line or the amount of change produced in Y by a unit change in X X = score on the independent variable
Regression Analysis Before using the formula for the regression line, a and b must be calculated. Compute b first, using Formula 15.3:
Regression Analysis The Y intercept (a) is computed from Formula 15.4:
Regression Analysis For the relationship between % college educated and turnout: b (slope) =.42 a (Y intercept)= A slope of.42 means that turnout increases by.42 (less than half a percent) for every unit increase of 1 in % college educated. The Y intercept means that the regression line crosses the Y axis at Y =
Predicting Y What turnout would be expected in a state where only 10% of the population was college educated? What turnout would be expected in a state where 70% of the population was college educated? This is a positive relationship so the value for Y increases as X increases: For X =10, Y = 54.5 For X =70, Y = 79.7
Pearson’s r Pearson’s r is a measure of association for I-R variables. For the relationship between % college educated and turnout, r =.32. This relationship is positive and weak to moderate. As level of education increases, turnout increases.
Example of Computation The computation and interpretation of a, b, and Pearson’s r will be illustrated using Problem The variables are: Voter turnout (Y) Average years of school (X) The sample is 5 cities. This is only to simplify computations, 5 is much too small a sample for serious research.
Example of Computation The scores on each variable are displayed in table format: Y = Turnout X = Years of Education CityXY A B C D E13.070
Example of Computation Sums are needed to compute b, a, and Pearson’s r. XYX2X2 Y2Y2 XY
Interpreting Pearson’s r An r of 0.98 indicates an extremely strong relationship between years of education and voter turnout for these five cities. The coefficient of determination is r 2 =.96. Education, by itself, explains 96% of the variation in voter turnout.
Interpreting Pearson’s r Our first example provides a more realistic value for r. The r between turnout and % college educated for the 50 states was: r =.32 This is a weak to moderate, positive relationship. The value of r 2 is.10. Percent college educated explains 10% of the variation in turnout.