Guided by Presented By:- Mr. Saurabh patel 5 TH SEM EC Professor (HOD) Parshad Joshi(130340111010) NSIT, Jetalpur Tirthal Patel (130340111022) Maniratnam.

Slides:



Advertisements
Similar presentations
Gauss’s Law Electric Flux
Advertisements

Gauss’ Law AP Physics C.
The electric flux may not be uniform throughout a particular region of space. We can determine the total electric flux by examining a portion of the electric.
Gauss’s law and its applications
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
Physics 2102 Lecture 4 Gauss’ Law II Physics 2102 Jonathan Dowling Carl Friedrich Gauss Version: 1/23/07 Flux Capacitor (Operational)
Charge and Electric Flux. Electric Flux A closed surface around an enclosed charge has an electric flux that is outward on inward through the surface.
Phy 213: General Physics III Chapter 23: Gauss’ Law Lecture Notes.
Physics 2113 Lecture 12: WED 11 FEB Gauss’ Law III Physics 2113 Jonathan Dowling Carl Friedrich Gauss 1777 – 1855 Flux Capacitor (Operational)
Chapter 23 Gauss’ Law.
1/18/07184 Lecture 71 PHY 184 Spring 2007 Lecture 7 Title: Using Gauss’ law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Lesson 7 Gauss’s Law and Electric Fields. Class 18 Today, we will: learn the definition of a Gaussian surface learn how to count the net number of field.
Chapter 22 Gauss’s Law Electric charge and flux (sec &.3) Gauss’s Law (sec &.5) Charges on conductors(sec. 22.6) C 2012 J. Becker.
Nadiah Alanazi Gauss’s Law 24.3 Application of Gauss’s Law to Various Charge Distributions.
Apply Gauss’s law 2. Choose Gaussian surface so that E can be taken out of integration: explore the symmetry of E Symmetry of EGaussian Surface Spherical.
Charles Allison © 2000 Chapter 22 Gauss’s Law HW# 5 : Chap.22: Pb.1, Pb.6, Pb.24, Pb.27, Pb.35, Pb.46 Due Friday: Friday, Feb 27.
1 W02D2 Gauss’s Law. 2 From Last Class Electric Field Using Coulomb and Integrating 1) Dipole: E falls off like 1/r 3 1) Spherical charge:E falls off.
a b c Gauss’ Law … made easy To solve the above equation for E, you have to be able to CHOOSE A CLOSED SURFACE such that the integral is TRIVIAL. (1)
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
Chapter 24 Gauss’s Law.
Physics.
Gauss’s law : introduction
Chapter 22 Gauss’s Law.
Gauss’s Law The electric flux through a closed surface is proportional to the charge enclosed The electric flux through a closed surface is proportional.
Chapter 21 Gauss’s Law. Electric Field Lines Electric field lines (convenient for visualizing electric field patterns) – lines pointing in the direction.
Electricity and Magnetism Review 1: Units 1-6
Gauss’sLaw 1 P05 - The first Maxwell Equation A very useful computational technique This is important!
Chapter 23 Gauss’s Law Summer Chapter 23 Gauss’ law In this chapter we will introduce the following new concepts: The flux (symbol Φ ) of the electric.
Chapter 22 Gauss’ Law.
GAUSS’ LAW & SYMMETRY Annette Von Jaglinsky Darin Howell Clay Sarafin.
EMLAB 1 Chapter 3. Gauss’ law, Divergence. EMLAB 2 Displacement flux : Faraday’s Experiment charged sphere (+Q) insulator metal Two concentric.
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
1 CHAPTER-23 Gauss’ Law. 2 CHAPTER-23 Gauss’ Law Topics to be covered  The flux (symbol Φ ) of the electric field  Gauss’ law  Application of Gauss’
22 Electric Field II Covering sections 1-5 (omit section 6)
1 Lecture 3 Gauss’s Law Ch. 23 Physlet ch9_2_gauss/default.html Topics –Electric Flux –Gauss’
Copyright © 2009 Pearson Education, Inc. Chapter 22 Gauss’s Law.
ELECTRICITY PHY1013S GAUSS’S LAW Gregor Leigh
Divergence and Curl of Electrostatic Fields Field of a point charge arrowsfield lines:
Introduction: what do we want to get out of chapter 24?
Gauss’ Law Chapter 23 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
W02D2 Gauss’s Law Class 02.
A b c. Choose either or And E constant over surface is just the area of the Gaussian surface over which we are integrating. Gauss’ Law This equation can.
Physics 2102 Gauss’ law Physics 2102 Gabriela González Carl Friedrich Gauss
Gauss’s law This lecture was given mostly on the board so these slides are only a guide to what was done.
Physics 2113 Lecture: 09 MON 14 SEP
Physics 212 Lecture 4, Slide 1 Physics 212 Lecture 4 Today's Concepts: Conductors + Using Gauss’ Law Applied to Determine E field in cases of high symmetry.
Unit 1 Day 11: Applications of Gauss’s Law Spherical Conducting Shell A Long Uniform Line of Charge An Infinitely Large, Thin Plane of Charge Experimental.
Physics 2113 Lecture 10: WED 16 SEP Gauss’ Law III Physics 2113 Jonathan Dowling Carl Friedrich Gauss 1777 – 1855 Flux Capacitor (Operational)
Copyright © 2009 Pearson Education, Inc. Applications of Gauss’s Law.
24.2 Gauss’s Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Gauss’s Law Chapter 24.
Chapter 23 Gauss’s Law Spring 2008.
Physics 2102 Lecture: 06 MON 26 JAN 08
Problem-Solving Guide for Gauss’s Law
Using Symmetry to Solve really complex vector calculus. . .
Flux Capacitor (Operational)
TOPIC 3 Gauss’s Law.
Gauss’ Law AP Physics C.
Gauss’s Law Electric Flux
Gauss’ Law AP Physics C.
Chapter 23 Gauss’ Law In this chapter we will introduce the following new concepts: The flux (symbol Φ ) of the electric field.
Physics 2102 Lecture 05: TUE 02 FEB
Phys102 Lecture 3 Gauss’s Law
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Gauss’ Law AP Physics C.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Example 24-2: flux through a cube of a uniform electric field
Applying Gauss’s Law Gauss’s law is useful only when the electric field is constant on a given surface 1. Select Gauss surface In this case a cylindrical.
Presentation transcript:

Guided by Presented By:- Mr. Saurabh patel 5 TH SEM EC Professor (HOD) Parshad Joshi( ) NSIT, Jetalpur Tirthal Patel ( ) Maniratnam Mudaliar( ) GAUSS LAW

OUT LINE Gauss law Gauss’ Law – How does it work? Gauss & Michael Faraday Gauss’ Law and cylindrical symmetry Gauss’ Law for insulating sheets and disks Gauss’ Law for conducting sheets and disks summary

Gauss’ Law Where does a fluid come from? A spring! The spring is the SOURCE of the flow. Suppose you enclose the spring with a closed surface such as a sphere. If your water accumulates within the sphere, you can see that the total flow out of the sphere is equal to the rate at which the source is producing water. In the case of electric fields the source of the field is the CHARGE! So we can now say that the SUM OF THE SOURCES WITHIN A CLOSED SURFACE IS EQUAL TO THE TOTAL FLUX THROUGH THE SURFACE. This has become known as Gauss' Law

Gauss’ Law The electric flux (flow) is in direct proportion to the charge that is enclosed within some type of surface, which we call Gaussian. The vacuum permittivity constant is the constant of proportionality in this case as the flow can be interrupted should some type of material come between the flux and the surface area. Gauss’ Law then is derived mathematically using 2 known expressions for flux.

Gauss’ Law – How does it work? Step 1 – Is there a source of symmetry? Consider a POSITIVE POINT CHARGE, Q. Yes, it is spherical symmetry! You then draw a shape in such a way as to obey the symmetry and ENCLOSE the charge. In this case, we enclose the charge within a sphere. This surface is called a GAUSSIAN SURFACE. Step 2 – What do you know about the electric field at all points on this surface? It is constant. The “E” is then brought out of the integral.

Gauss’ Law – How does it work? Step 4 – Identify the charge enclosed? The charge enclosed is Q! Step 3 – Identify the area of the Gaussian surface? In this case, summing each and every dA gives us the surface area of a sphere. This is the equation for a POINT CHARGE!

Gauss & Michael Faraday Faraday was interested in how charges move when placed inside of a conductor. He placed a charge inside, but as a result the charges moved to the outside surface. Then he choose his Gaussian surface to be just inside the box. He verified all of this because he DID NOT get shocked while INSIDE the box. This is called Faraday’s cage.

Gauss’ Law and cylindrical symmetry Consider a line( or rod) of charge that is very long (infinite) We can ENCLOSE it within a CYLINDER. Thus our Gaussian surface is a cylinder. This is the same equation we got doing extended charge distributions.

Gauss’ Law for insulating sheets and disks A charge is distributed with a uniform charge density over an infinite plane INSULATING thin sheet. Determine E outside the sheet. + For an insulating sheet the charge resides INSIDE the sheet. Thus there is an electric field on BOTH sides of the plane. This is the same equation we got doing extended charge distributions.

Gauss’ Law for conducting sheets and disks A charge is distributed with a uniform charge density over an infinite thick conducting sheet. Determine E outside the sheet. + For a thick conducting sheet, the charge exists on the surface only E =0

summary Whether you use electric charge distributions or Gauss’ Law you get the SAME electric field functions for symmetrical situations. FunctionPoint, hoop, or Sphere (Volume) Disk or Sheet (AREA) “insulating and thin” Line, rod, or cylinder (LINEAR) Equation

Thank you