NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V , 

Slides:



Advertisements
Similar presentations
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Advertisements

Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
ASC XP-823 Error Field Correction and Long Pulse J.E. Menard, S.P. Gerhardt Part 1 Determine the source of, and optimal correction for, the observed n=3.
NSTX S. A. Sabbagh XP615: Active Stabilization of the Resistive Wall Mode at Low Aspect Ratio  Goals (Part I):  Operate new RWM feedback system on 0.9–1.0.
1 J-W. Ahn a H.S. Han b, H.S. Kim c, J.S. Ko b, J.H. Lee d, J.G. Bak b, C.S. Chang e, D.L. Hillis a, Y.M. Jeon b, J.G. Kwak b, J.H. Lee b, Y. S. Na c,
XP810 and 801 report, Feb 08 slide 1 Buttery, Gerhardt, La Haye, Sabbagh June 2008 reporting meeting – XP810 and 801 experiment: 801: Marginal island width.
NSTX The Resistive Wall Mode and Beta Limits in NSTX S. A. Sabbagh 1, J. Bialek 1, R. E. Bell 2, A. H. Glasser 3, B. LeBlanc 2, J.E. Menard 2, F. Paoletti.
SIMULATION OF A HIGH-  DISRUPTION IN DIII-D SHOT #87009 S. E. Kruger and D. D. Schnack Science Applications International Corp. San Diego, CA USA.
NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX.
JT-60U Resistive Wall Mode (RWM) Study on JT-60U Go Matsunaga 松永 剛 Japan Atomic Energy Agency, Naka, Japan JSPS-CAS Core University Program 2008 in ASIPP.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
XP-746: ELM characterization in NSTX R. J. Maqueda Nova Photonics Inc. and the NSTX Research Team ’07 Results Review July 23-24, 2007 PPPL.
NSTX SAS – APS DPP ‘05 Supported by Office of Science S.A. Sabbagh 1, A.C. Sontag 1, W. Zhu 1, M.G. Bell 2, R. E. Bell 2, J. Bialek 1, D.A. Gates 2, A.
S.A. Sabbagh for NSTX Macrostability TSG Macrostability TSG Suggested FY-12 Milestones – Address key ReNeW issues for ST development 1) Assess sustained.
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
1 CHI Summary Transient CHI (XP606) –All systems operated reliably without any faults Edge Current drive (XP533)
TITLE: Scaling of the far SOL turbulence as a function of (1), the average density keeping other plasma parameters constant. (3), the plasma current keeping.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
1 Off-axis Fishbones in DIII-D Bill Heidbrink Leaders of the Experiment G. Matsunaga, M. Okabayashi Energetic Particle Working Group R. Fisher, R. Moyer,
T.M. Biewer, Oct. 20 th, 2003NSTX Physics Meeting1 T. M. Biewer, R.E. Bell October 20 th, 2003 NSTX Physics Meeting Princeton Plasma Physics Laboratory.
NSTX IAEA FEC 2006 PD: S.A. Sabbagh 1 Supported by Office of Science S.A. Sabbagh 1, R. E. Bell 2, J.E. Menard 2, D.A. Gates 2, A.C. Sontag 1, J.M. Bialek.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
NSTX APS DPP 2008 – RWM Stabilization in NSTX (Berkery)November 19, Resistive Wall Mode stabilization in NSTX may be explained by kinetic theory.
Workshop on MHD Control 2008 – O.Katsuro-Hopkins Computational analysis of advanced control methods applied to RWM control in tokamaks Oksana N. Katsuro-Hopkins.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
NSTX EXPERIMENTAL PROPOSAL - OP-XP-825 Title: HHFW Heating/CD phase scans in D L-mode plasmas P. Ryan, J. Hosea, R. Bell, L. Delgado-Aparicio, S. Kubota,
Stabilizing Shells in ARIES C. E. Kessel Princeton Plasma Physics Laboratory ARIES Project Meeting, 5/28-29/2008.
NSTX WZ – XP524 - NSTX Results Review ‘05 Supported by Office of Science Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT.
NSTX XP818: ELM mitigation w/midplane coils - SAS S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others… (joint ELM mitigation.
NSTX XP802 results - S.A. Sabbagh XP802: Active RWM stabilization system optimization and ITER support Goals  Alter active control configuration to achieve.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Hiroshi Tojo, IAEA TM/ISTW2008, Frascati, Italy, October 2008 Features of High Frequency Mode during Internal Reconnection Events on MAST Graduate School.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority ITB formation and evolution with co- and counter NBI A. R. Field, R. J. Akers,
MHD in the Spherical Tokamak MAST authors: SD Pinches, I Chapman, MP Gryaznevich, DF Howell, SE Sharapov, RJ Akers, LC Appel, RJ Buttery, NJ Conway, G.
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
Rajesh Maingi Oak Ridge National Laboratory M. Bell b, T. Biewer b, C.S. Chang g, R. Maqueda c, R. Bell b, C. Bush a, D. Gates b, S. Kaye b, H. Kugel b,
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
1 Stability Studies Plans (FY11) E. Fredrickson, For the NCSX Team NCSX Research Forum Dec. 7, 2006 NCSX.
XP1020: Determination of Weak RWM Stability Rotation Profiles J.W. Berkery, S.A. Sabbagh, H. Reimerdes Department of Applied Physics, Columbia University,
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
Low-density Start-up D. Mueller, M. Bell, S. Gerhardt, J. Menard, R. Raman, S. Sabbagh NSTX FY12 low density discussion: May 12, 2011.
NSTX MHD Mode Control Mtg S.A. Sabbagh 1 RWM Stabilization and Control Research on NSTX S.A. Sabbagh 1, J.M. Bialek 1, R.E. Bell 2, D.A. Gates 2,
NSTX S. A. Sabbagh 1, J. Bialek 1, A. Sontag 1, W. Zhu 1, B. LeBlanc 2, R. E. Bell 2, A. H. Glasser 3, L. L. Lao 4, J.E. Menard 2, M. Bell 2, T. Biewer.
MARS analysis of rotational stabilization of the RWM in NSTX & DIII-D AT plasmas Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
NSTX XP818: ELM mitigation w/midplane coils – SAS, JKP, RM, SG XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric.
NSTX XP1031: MHD/ELM stability vs. thermoelectric J, edge J, and collisionality -NSTX Physics Mtg. 6/28/10 - S.A. Sabbagh, et al. S.A. Sabbagh 1, T.E.
Summary of RF Work To Date G. Taylor NSTX Monday Physics Meeting June 21, 2010 NSTX Supported by 1.
Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06.
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
NSTX Sabbagh/Shaing S. A. Sabbagh 1, K.C. Shaing 2, et al. XP743: Island-induced neoclassical toroidal viscosity and dependence on i Supported by Columbia.
SMK – XP 1 XP 811: Effect of Rotation on Energy/Impurity Confinement S. Kaye, L. Delgado-Aparicio Joule Milestone Description –XP directly addresses Joule.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
3/2 NTMs, XP 834, X/X/20081 XP 834: Threshold and Small Island Physics of the 3/2 NTM S.P. Gerhardt, D. Gates Helpful discussions with E. Fredrickson,
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
NSTX SAS – GMS Mtg. 12/1/04 S. A. Sabbagh and J. E. Menard NSTX RWM Active Feedback System Implementation Plan Discussion NSTX Global Mode Stabilization.
NSTX S. A. Sabbagh XP452: RWM physics with initial global mode stabilization coil operation  Goals  Alter toroidal rotation / examine critical rotation.
NSTX XP802 review - S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, S. Gerhardt 2, J.E. Menard 2, J.W. Berkery 1, J.M. Bialek 1, D.A. Gates 2, B. LeBlanc 2,
T. Biewer, Sep. 21 st, 2004 NSTX Results Review of 11 Dependence of Edge Flow on Magnetic Configuration in NSTX T.M. Biewer, R.E. Bell, D. Gates,
XP723: Momentum transport and the effect of rotation on confinement Make use of n=3 NRMP for rotation braking in various degrees Steady-state application:
1 MP Isolation of NTV - * variation, offset 10/6/15 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y. Jeon, (NFRI) et al. MP :
NSTX XP1062 (NTV) team review: 9/16/10 - S.A. Sabbagh, et al. S.A. Sabbagh, R.E. Bell, J.W. Berkery, S.P. Gerhardt, J-K Park, et al. XP1062: NTV behavior.
Decrease of transport coefficients in the plasma core after off-axis ECRH switch-off K.A.Razumova and T-10 team.
NSTX S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, J.E. Menard 2, D.A. Gates 2, J.M. Bialek 1, B. LeBlanc 2, F. Levinton 3, K. Tritz 4, H. Yu 3 XP728: RWM.
Reconnection Process in Sawtooth Crash in the Core of Tokamak Plasmas Hyeon K. Park Ulsan National Institute of Science and Technology, Ulsan, Korea National.
High-beta Program 3 June 2002 Objective: Investigate effect of toroidal currents on high-b performance: 1. Low-iota: discharges with current ramp and constant.
Stabilization of m/n=1/1 fishbone by ECRH
Presentation transcript:

NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V ,  N ) space Use past XP experience and new theories to determine boundary  Present theory and NSTX data suggests:  crit /  A ~ 1/4q 2 Define the operating space and criteria for active stabilization  Measure n > 1 resistive wall modes Present high  N plasmas are computed to be n = 2 unstable Compare to theoretical computation of n > 1 stability (structure?) Look for finite mode frequency  Set up conditions to examine physics of RWM passive stabilization in high  N ST plasmas to compare to theory Critical rotation frequency: XP by A. Sontag Rotation damping physics: XP408 by W. Zhu

NSTX S. A. Sabbagh Stability boundary probed and modes observed  q and pressure peaking variation were main techniques  q variation through slow B t reduction  B t reduction placed discharge in stabilized high   /  A region  B t reduction yielded variation of pressure peaking  Low frequency 370Hz mode observed before mode lock  Global collapse in rotation profile observed as in past RWM XPs  High  targets reached at high toroidal rotation speed    /  A = 0.48;  N = 6.7 (highest value at constant I p );  t = 38%  New diagnostic capabilities used to measure RWM  Internal locked mode sensor array shows n=1 ~ 10-20G; n=2 ~ 5G  51 channel, 10 ms resolution CHERS yields unprecedented detail detail of global rotation collapse  USXR data taken at two toroidal positions (not yet examined)

NSTX S. A. Sabbagh Past experiments show  crit depends on q  Chu/Bondeson critical rotation  crit /  A = 1/(4q 2 ) applies across the profile in CY02 plasmas

NSTX S. A. Sabbagh Approaches to probing (V ,  N ) stability boundary  Rapidly drive across increasing growth rate contours  This is the standard approach  Destabilize RWM by increasing  crit  Decrease B t slowly in stable discharge  Stabilize RWM once triggered  Decrease  crit by increasing B t slowly in unstable discharge  NBI step-down after destabilization  Drop out of H mode with  N >>  NNo-wall  Vary timing of NBI and B t variation to change position in (V ,  N ) space

NSTX S. A. Sabbagh Schematic approach to probing stability boundary  Technique 3 was most extensively used  Technique 4 occurred as pressure peaking increased at lower B t NN /A/A Unstable  N wall  N no-wall decreased q increased q drop  N no-wall

NSTX S. A. Sabbagh XP407 Passive RWM - Waveforms: 4/13/04  Aspect ratio in increased in time – vary A in similar way X10 Amps (arb) Time (Seconds) Source B Source C (start with this source delayed) Default NBI timing Plasma current Source A 4.5 Run NBI at max power Use setup shot LSN Toroidal field Optional delayed I p ramp

NSTX S. A. Sabbagh XP407 Passive RWM - Run plan: 4/13/04  Scan boundary of passive stabilization space (F ,  N ) TaskNumber of Shots A) Restore shot ,  ~ 2.1 LSN (or newer similar target) (I p ramped to 0.9 MA B t = 4.4 kG (or above),  =2.1, l i ~ 0.65) (i) 3 NBI sources (rerun with 3 rd source at t = 0.4s)1 (ii) 2 NBI + delayed 1 NBI if collapse occurs before 0.5 s2 B) Use toroidal field ramp to influence rotation evolution (i) B t = 4.4 kG, reduced to B t = 3.5 kG, vary start time of ramp 3 (ii) B t = 4.4 kG, reduced to B t ~ 4.0 kG, vary start time of ramp 3 (iii) choose best B t ramp, vary start time (2 or 3 unique times)4 (iv) B t ~ 4.0 kG, reproduce collapse time, ramp B t up to delay crash4 C) Vary NBI timing to best cover (F ,  N ) space (i) 3 NBI sources with source step-down/ vary TS laser timing5 D) Take plasma out of H-mode (ramp PF2) for high  N /  NNo-wall 4 Total shots: 26

NSTX S. A. Sabbagh RWM mode locking and slow phase rotation observed  Low frequency ~ 440Hz precursor to mode lock  Mode locks at t=0.49s  Rotating modes (typically islands) are clearly rotating at this time  Very slow rotation of n=1 phase observed after lock  Apparent f ~ 50 Hz

NSTX S. A. Sabbagh Global rotation collapse when core n=1 is triggered  Global rotation collapse when core n=1 is triggered  n=1 RWM appears to trigger core n=1 mode  RWM locks at least 30 ms before islands eventually lock  No apparent momentum transfer, which would be observed if braking were due to electromagnetic torque at island rotation profile evolution Radius (cm) rapid global collapse 440 Hz odd-n observed core n=1 triggered, RWM locked V  = 1kHz (> 440 Hz) PRELIMINARY

NSTX S. A. Sabbagh Slower collapse – RWM near marginal stability?  RWM rotation frequency ~ 370 Hz in this case  Mode locks/unlocks before plasma rotation terminates  Momentum transfer across rational surface observed before insland lock at 0.51s  RWM “marginally stable” near 0.5s, collapses plasma again and locks at 0.52s rotation profile evolution Radius (cm) PRELIMINARY 370 Hz odd-n observed core n=1 triggered, RWM locks

NSTX S. A. Sabbagh RWM sensor data taken during XP407  Detail of RWM slow rotation, mode locking underway J. Menard A. Sontag  B p = 4G  B p = 10G upper array lower array