1 Quantum Field Theory 1 시간 30 분 기준 1 Class 학생들이 일반물리 수준의 Relativity 와 Quantum Mechanics 에 대해 충분히 알고 있다고 가정한다. 중반 이후에는 학생들이 전공 Quantum Mechanics 를 최소 1.

Slides:



Advertisements
Similar presentations
Rae §2.1, B&J §3.1, B&M § An equation for the matter waves: the time-dependent Schrődinger equation*** Classical wave equation (in one dimension):
Advertisements

From Quantum Mechanics to Lagrangian Densities
Quantum One: Lecture 6. The Initial Value Problem for Free Particles, and the Emergence of Fourier Transforms.
The electromagnetic (EM) field serves as a model for particle fields
Quantum One: Lecture 5a. Normalization Conditions for Free Particle Eigenstates.
Quantum One: Lecture 4. Schrödinger's Wave Mechanics for a Free Quantum Particle.
Quantum One: Lecture 3. Implications of Schrödinger's Wave Mechanics for Conservative Systems.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 3.
One assumes: (1) energy, E  (- ℏ /i)  /  t (2) momentum, P  ( ℏ /i)  (3) particle probability density,  (r,t)  = i  /  x + j  /  y + k  / 
The electromagnetic (EM) field serves as a model for particle fields  = charge density, J = current density.
1 MECH 221 FLUID MECHANICS (Fall 06/07) Tutorial 6 FLUID KINETMATICS.
Theoretical Mechanics - PHY6200 Chapter 6 Introduction to the calculus of variations Prof. Claude A Pruneau, Physics and Astronomy Department Wayne State.
The Harmonic Oscillator
An Introduction to Field and Gauge Theories
States, operators and matrices Starting with the most basic form of the Schrödinger equation, and the wave function (  ): The state of a quantum mechanical.
Relativistic Classical Mechanics. XIX century crisis in physics: some facts Maxwell: equations of electromagnetism are not invariant under Galilean transformations.
Physics 430: Lecture 14 Calculus of Variations Dale E. Gary NJIT Physics Department.
The World Particle content. Interactions Schrodinger Wave Equation He started with the energy-momentum relation for a particle he made the quantum.
Section 2: Finite Element Analysis Theory
Monday, Apr. 2, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #12, 13, 14 Monday, Apr. 2, 2007 Dr. Jae Yu 1.Local Gauge Invariance 2.U(1) Gauge.
GENERAL PRINCIPLES OF BRANE KINEMATICS AND DYNAMICS Introduction Strings, branes, geometric principle, background independence Brane space M (brane kinematics)
From the previous discussion on the double slit experiment on electron we found that unlike a particle in classical mechanics we cannot describe the trajectory.
Module 3Special Relativity1 Module 3 Special Relativity We said in the last module that Scenario 3 is our choice. If so, our first task is to find new.

Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
Deterministic Problem Introduction 이 챕터에서 다음과 같은 Inhomogeneous 타입의 Equation 을 다룰것이다 Deterministic Problem 에서 g 에 대한 해 L 은 유일하다 Analysis: L 과 g 가 주어졌을 때.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
Wednesday, Feb. 28, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #9 Wednesday, Feb. 28, 2007 Dr. Jae Yu 1.Quantum Electro-dynamics (QED) 2.Local.
For s=1 for EM-waves total energy density:  # of photons wave number vector: the Klein-Gordon equation:
Wednesday, Mar. 5, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #13 Wednesday, Mar. 5, 2003 Dr. Jae Yu Local Gauge Invariance and Introduction.
MODULE 1 In classical mechanics we define a STATE as “The specification of the position and velocity of all the particles present, at some time, and the.
The Quantum Theory of Atoms and Molecules The Schrödinger equation and how to use wavefunctions Dr Grant Ritchie.
PHYS 773: Quantum Mechanics February 6th, 2012
Sect. 7.9: Lagrangian Formulation of Relativity (input from Marion!) We now see, in principal at least, how to generalize Newton’s 2 nd Law Equations.
Quantum Mechanical Cross Sections In a practical scattering experiment the observables we have on hand are momenta, spins, masses, etc.. We do not directly.
Advanced EM - Master in Physics Poynting’s theorem Momentum conservation Just as we arrived to the Poynting theorem – which represents the.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 9.
Relativistic Quantum Mechanics
Phy 303: Classical Mechanics (2) Chapter 3 Lagrangian and Hamiltonian Mechanics.
Module 10Energy1 Module 10 Energy We start this module by looking at another collision in our two inertial frames. Last time we considered a perfectly.

1 Methods of Experimental Particle Physics Alexei Safonov Lecture #2.
Wednesday, Mar. 26, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #18 Monday, Mar. 26, 2003 Dr. Jae Yu Mass Terms in Lagrangians Spontaneous.
For s=1 for EM-waves total energy density:  # of photons wave number vector: the Klein-Gordon equation:
Prof. M.A. Thomson Michaelmas Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 3 : Interaction by Particle Exchange and QED X X.
Monday, Apr. 11, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #18 Monday, Apr. 11, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge fields.
Wednesday, Nov. 15, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #19 Wednesday, Nov. 15, 2006 Dr. Jae Yu 1.Symmetries Local gauge symmetry Gauge.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
The Quantum Theory of Atoms and Molecules
Quantum Field Theory (PH-537) M.Sc Physics 4th Semester
Schrodinger’s Equation for Three Dimensions
Canonical Quantization
PHYS 3446 – Lecture #23 Symmetries Why do we care about the symmetry?
Chapter III Dirac Field Lecture 2 Books Recommended:
Chapter V Interacting Fields Lecture 1 Books Recommended:
Fundamental principles of particle physics
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1W1+  2W2 +  3W3.
Physics 222 UCSD/225b UCSB Lecture 10 Chapter 14 in H&M.
Quantum One.
Announcements Exam Details: Today: Problems 6.6, 6.7
Quantum One.
Quantum One.
Canonical Quantization
Quantum One.
Quantum Two.
What is the GROUND STATE?
Relativistic Classical Mechanics
PHYS 3446 – Lecture #19 Symmetries Wednesday, Nov. 15, 2006 Dr. Jae Yu
It means anything not quadratic in fields and derivatives.
Examples of QED Processes
Presentation transcript:

1 Quantum Field Theory 1 시간 30 분 기준 1 Class 학생들이 일반물리 수준의 Relativity 와 Quantum Mechanics 에 대해 충분히 알고 있다고 가정한다. 중반 이후에는 학생들이 전공 Quantum Mechanics 를 최소 1 학기 수강하였다 고 가정한다. 필요교재 1.Griffith Chapter 3, Chapter 7 2.Reinhardt Chapter 1,2,3,4,5,8

2 Quantum Field Theory Class I : Functional Derivative and Integral Function 이란 무엇인가 ? 주어진 input x 에 대해 output y 의 값을 결정할 수 있다 면, 이 y 를 x 의 함수라고 부른다. Function 을 어떻게 미분하나 ? Function 을 어떻게 적분하나 ? 당연히 함수의 인풋은 숫자 ( 들 ) 이고, 아웃풋도 숫자 ( 들 ) 이다. A function maps a number (or several numbers) to a number (or several numbers).

3 Quantum Field Theory 그렇다면 Functional 이란 무엇인가 ? 예를 들어 우리가 y(x) = 2 이라고 인풋을 주면, 아웃풋은 y(x) = 2x 이라고 인풋을 주면, 아웃풋은 ? Functional 을 일반적인 함수처럼 쓰는 방법이 사실 존재한다. 일단 위의 적분을 구분 구적법에 의해 n 개의 구간으로 나눠 구한다고 생각해 보자. 각 구간에서의 x 값이 x 1 = 1/n, x 2 = 2/n, … x n = 1 이라고 하면 A functional maps a function to a number. 즉 함수처럼 생긴 어떤 것인데 인풋은 함수 ( 들 ) 이고, 아웃풋은 숫자 ( 들 ) 이다. 예를 들면 일견 복잡해 보이지만, y(x 1 ), y(x 2 ), … y(x n ) 을 y 1, y 2, … y n 이라고 쓰고, 이것을 n 개의 변 수로 생각하면 J 는 이 n 개의 변수의 인풋에 따라 하나의 값을 돌려주는 함수가 된다. n 이 무한으로 가는 limit 에서 이 구분구적법은 정확한 적분값을 준다. 즉, J 라는 functional 은 무한개의 변수를 가진 function 으로 생각하는 것이 가능하다. f(x,y) = y 2 - 4xy + 5x 2 이라고 정의하면,

4 Quantum Field Theory Functional 을 미분해 보자. Functional 의 미분이란 게 무엇인지에 앞서 대체 이게 왜 필요한지부터 생각해 보자. y(x) 가 y = x 2 - 4x + 5 로 주어졌을 때 이 y 를 최소화시키는 x 를 어떻게 구하나 ? 완전 제곱 형태로 바꾸는 등의 방법도 있지만, 미분해서 0 이 되는 지점을 구하는 방법이 가장 일반적이다. 마찬가지로, 누군가 J 를 최소화시키는 함수 y(x) 가 무엇인지 물어봤다면 ? 이로부터 y(x) = 2x 이라면 J[y] = 1/3 이고, 이게 최소값임을 알 수 있다. 하지만 이런 방 법이 모든 일반적인 functional 에 대해 가능하진 않을 것이다. 그렇다면 functional 의 “ 미 분 ” 이란 개념을 도입할 방법에 대해 생각해 보는 것이 자연스럽다.

5 Quantum Field Theory Functional 의 미분에 도달하는 두 가지 방법이 있다. 1.Functional 을 Discrete 버전으로 쓴 함수의 미분을 생각해 보는 방법 2.Calculus of Variation 을 사용하는 방법 먼저 1 번 방법으로 시도를 해보자. 이 함수를 최소화시키는 변수 y 1, y 2,..., y n 의 값을 어떻게 구해야 하나 ? 즉, 모든 k 에 대해서 다음의 식을 만족하는 y k 를 찾으면 된다. n 이 무한으로 가는 리밋을 생각하면 우리가 원하는 함수는 정확한 답을 찾을 수 있음이 확인되었다.

6 Quantum Field Theory 이러한 과정을 일반화해보면, 의 극값 (extremum) 을 주는 함수를 구하는 방법은 f(x,y) 를 x,y 의 함수로 보고, y 방향의 편미분을 가해서 나오는 함수방정 식의 해를 구하는 것이다. ( 실제 극값이 아닌 saddle point 일 수도 있다.) 어떤 함수 y = y(x) 가 존재하여 J[y(x)] 가 이 함수의 functional 인 경 우, functional derivative 는 다음과 같이 표현된다. 그리고 functional derivative 가 0 이라는 것은 이러한 방법으로 앞에서 소개한 functional 의 극값을 주는 함수 y(x) 를 구할 수 있다.

7 Quantum Field Theory 만약 f 가 x,y 만이 아니라 y′ 의 함수라면 어떻게 될까 ? y 가 정해지면 y′ 이 결정되므로 이러한 표현이 적합한지에 대한 의문이 있을 수 있다. 현재로서는 f 의 표현식에 y 의 미분 항이 explicit 하게 포함되어 있다는 뜻으로 이해를 하 자. 이 경우에도 유한한 점에서의 y 값을 input 으로 생각하고, 미분은 이들의 finite difference 를 이용해 나타내면, 같은 방법으로 functional derivative 를 유도할 수 있겠지 만, 여기서는 보다 광범위하게 사용되는 calculus of variation 을 사용해서 증명해 보자. 이 때는 다음과 같은 계산을 하면 된다. Euler’s equation

8 Quantum Field Theory The expression that y(x) provides an extremum for J means for any path infinitesimally away from y(x) J is a either local maximum or minimum. More mathematical definition can be given by introducing a function y(α,x) where η is some function of x that has a continuous derivatives (to the desired level) and that vanishes at x 1 and x 2 (or any other conditions necessary to satisfy the boundary conditions). Then, our original y becomes y(0,x). J is in principle a functional of y. However, once we use y(α,x) instead of y(x), we may think J as a normal function of α. The condition that the integral have a stationary value is that for all possible functions η(x), the following equations are satisfied: Usually it is the extremum, though it is not guaranteed in a strict sense.

9 Quantum Field Theory Example Problem: Find the shortest path between (x 1,y 1 ) and (x 2,y 2 ) Rather than following the abstract algebra, let us solve a simple problem to understand the general strategy of calculus of variation. The infinitesimal segment length is where the function y satisfies Let us use Using partial integral What is the condition that the above expression vanishes for all possible functions η?

10 Quantum Field Theory Example Problem: Find the shortest path between (x 1,y 1 ) and (x 2,y 2 ) Hence we proved that the straight line is the shortest path. Of course, mathematicians may complain that the proof completes only after considering all the non-differentiable functions. (and for functions with diverging y′) This is satisfied by To complete the answer, a and b must be determined by the boundary conditions.

11 Quantum Field Theory Let us find the general solution: We have Integrating by parts Euler’s Equation The integrated term vanishes due to the boundary conditions η(x 1 ) = η(x 2 ) = 0. (Be careful that for the free boundary condition, this argument does not work.)

12 Quantum Field Theory This equation must be true for all possible differentiable functions η(x). at α = 0, which means the function y(0,x) goes back to the original y(x). Euler’s equation Example 6.3 : Consider the surface generated by revolving a line connecting two fixed points (x 1, y 1 ) and (x 2, y 2 ) about an axis coplanar with the two points. Find the equation of the line connecting the points such that the surface area generated by the revolution (i. e. the area of the surface of revolution) is a minimum. Assume the equation of curve is y = y(x)

13 Quantum Field Theory and use the Euler’s equation The constants a and b must be determined so that the curve y(x) passes through the two given points. (The general solution is difficult to obtain analytically.) Anyway, it is an equation of a catenary. We let Rearranging terms change integral variable One may try the same problem after changing the axis. The result, eq turns out to be more difficult to solve. It is your choice to find and use easier method.

14 Quantum Field Theory x 에 대한 함수의 경우, x 로 적분하는 작업이 가능하다. 마찬가지로 y(x) 에 대한 functional 의 경우 y(x) 로 적분한다는 게 가능할까 ? Simple Harmonic Oscillator 의 경우 partition function 을 계산하려면 가능한 에너지 값이 continuous 할 경우에는, Sum 대신 적분을 사용하여 계산을 할 수 있을 것이다. 하지만 partition function 에서 더하는 모든 가능한 configuration 이 하나의 숫자 ( 위에 서는 n) 이 아니라 임의의 함수의 형태로 표현될 때는 어떨까 ? 적분을 미분의 역이라는 개념으로 생각한다면, discrete 버전으로 이해해 보자. 어떠한 functional G[y] 에 대해 함수 y 로 functional integral 을 하는 것을 다음과 같이 쓴다. y(x) 라는 함수가 x 1, x 2,..., x n 에서 y 1, y 2,..., y n 라는 값을 가진다면 이라고 생각할 수 있다. 각 y i 들은 어떤 값이든 취할 수 있기 때문에, 적분의 범위는 무 한이다. 물론 정확하게 계산하려면 n 이 무한으로 가는 리밋을 취해야만 한다.

15 Quantum Field Theory 예를 들어, partition function 을 계산하다 보면 자주 이런 형태의 식이 나온다. 계산 결과는 나왔는데, 이것은 n 이 무한으로 갈 때 발산하는 식이다. 사실, functional integral 은 normalization 을 특별히 신경 써서 하지 않으면 이런 문제가 발생한다. 문제의 종류에 따라 발산식이 되지 않도록 적당한 normalization factor A 를 정의해 줘야 한다. ( 문제에 따라 다른 factor 가 요구되는데 실제 문제를 풀다 보면 자 연스럽게 찾을 수 있다.) Partition function 등의 다양한 물리량을 다룰 때는 분자, 분모 양쪽에 비슷한 functional integral 이 존재할 때가 많은데, 이 경우 normalization 문제는 자연스럽게 해결된다.

16 Quantum Field Theory Functional Derivative 와 Integral 은 Action 의 계산, Euler-Lagrange Equation 계산, Path Integral 계산, Partition Function 계산 등 물리학의 다양한 영역에서 등장한다. 물리학에서 이러한 방법론이 개발된 과정을 잠깐 따라가 보자. 뉴튼의 운동법칙은 흔히 F = ma 라고 표현된다. 그런데 뉴튼의 운동법칙에 이르 는 또 하나의 방법이 존재한다. Of all the possible paths along which a dynamical system may move from one point to another within a specified time interval (consistent with any constraints), the actual path followed is that which minimizes the time integral of the difference between the kinetic and potential energies. In 1834, Hamilton’s principle is given as follows: 실제 계산하는 방법은 다음과 같다. 가장 간단한 1 차원 경우를 생각하면, 먼저 라그 랑지안을 다음과 같이 정의한다. 그 다음에 액션 (Action) 을 다음과 같이 정의된다. ( 출발시간이 t 1, 도착시간이 t 2 라고 할 때 )

17 Quantum Field Theory 액션을 최소화시키는 path 는 어떻게 찾을 수 있을까 ? 간단한 계산을 길게 돌아가서 하는 것 같지만, 복잡한 좌표계나 constraint 가 있는 문 제 등을 풀 때 이 방법이 유용하다. 무엇보다 중요한 것은, 이 방법을 사용하면 양자 역학으로의 자연스러운 확장이 가능하다는 것이다. 이미 유도한 바와 같이 이를 Euler-Lagrangian Equation 이라 부른다.

18 Quantum Field Theory 시간 t a 에 x a 지점에서 출발, 시간 t b 에 x b 지점에 도착할 probability amplitude 는 고전역학에서는 액션을 최소화하는 단 하나의 path 가 유일하게 가능하고, 입자는 더 블 슬릿 중 하나만 통과할 수 있다. 하지만 양자역학에서는 모든 path 가 다 인정된다, 단, 각 path 의 contribution 은 동일하지 않다. 그 weighting factor 는 예를 들어 더블슬릿 실험에 대해 생각해 보면 저 summation 은 슬릿 1 을 통과하는 amplitude 와 슬릿 2 를 통과하는 amplitude 를 더하는 작업이 다. 어떠한 사건의 probability amplitude ( 현 단계에서는 wavefunction 과 비슷한 개념이라고 생각해도 무방 )

19 Quantum Field Theory 앞에 설명한 discretization 을 이용하여, path integral 을 다음과 같은 보통의 적분으로 쓸 수 있다. A 는 발산을 피하기 위한 적절한 비례상수이다. 일반적으로는 무한히 많은 path 가 가능한데, 모 든 path 의 가능성을 더하는 방법은 이 functional integral 을 path integral 이라고 부른다.

20 Quantum Field Theory Classical Limit 에 대해 생각해 보자. 하나의 path, x(t) 를 중심으로 이 조금 옆의 path, x(t) + η(t) 의 amplitude 덧셈을 해보자. 즉, η(t) 는 아주 작다고 가정한다. 플랑크 상수가 0 으로 가는 리밋에서 어떤 일이 벌어지는가 ? 얼핏 보면 exp 함수의 oscillation 이 극심해지므로 여러 경로가 소멸간섭하여 amplitude 가 0 으로 수렴할 것처럼 보인다. ( 엄밀히는 Riemann–Lebesgue lemma 를 배워야 한다.) 단, amplitude 가 0 이 되는 것을 피하는 경로가 하나 있다. 그 조건은 바로 즉, amplitude 가 0 이 아닌 유일한 사건은 바로 액션이 최소가 되는 path, 즉 고전역학이 예측하는 바로 그 path 이다. (functional 미분이 0 이라도 최소가 아닐 수도 있는데, 이에 대한 설명은 생략한다.) x(t) 근처에서의 테일러 전개를 함수 버전으로 한 것. Amplitude 덧셈은 ( 원래 모든 path 에 대해 더해야 하지만 간단히 표현해 보자.) 간단히 말하자면, 고전역학이란 액션이 최소가 되는 사건만 일어난다는 역학, 양자역학은 액션이 S min +ħ 정도가 되는 사건까지는 쉽게 일어날 수 있다는 역학이다. ( 액션의 차이가 커질 수록 그 확률은 작아진다.)

21 Quantum Field Theory 그렇다면 path integral 이 우리가 알고 있는 양자역학과 동일하다는 것은 어떻게 확인 할 수 있을까 ? 양자역학적인 wave function 은 위에서 정의한 커널 K 를 이용하여 다음과 같이 쓸 수 있다. 즉, (x 2,t 2 ) 에서의 amplitude 는, t 2 - t 1 의 시간동안 x 1 에서 x 2 에 움직이는 모든 가능성을 더해서 구하여야 한다. 출발점이 명시되지 않았으므로 x 1 은 모든 지점이 될 수 있다. 시간차가 아주 작은 리밋에서 이 계산을 시도해 보자. 앞에 사용했던 discretization 의 간격 하나 만큼의 시간차라면 양변의 적절한 테일러 전개를 생각해 보자. ( 이후에는 ε 에 대한 1 차항까지만 계산 ) η 에 대한 odd power 항은 무시할 수 있다.

22 Quantum Field Theory Integral 의 첫째 항은 이어야만 normalization 이 맞게 된다. Integral 의 두번째 항은 ε 이 작은 limit 에서 일차항의 계수를 비교하면

23 Quantum Field Theory 같은 계산을 3 차원에서 수행하여 보면, 즉, path integral 은 슈뢰딩거 방정식과 동일한 결과를 준다. 하이젠베르그 (1925), 슈 뢰딩거 (1926) 에 이어 세번째 양자역학의 formalism 으로 1940 년대 말에 Feynmann 이 주도적으로 개발하였다. Path integral 은 이후 상대론적인 양자역학 (Quantum Field Theory) 의 개발의 주요한 방법을 제공하였다.

24 Quantum Field Theory Class II: Relativity and Tensor Formalism Imagine that we have two inertial frames, S and S′, with S′ moving at uniform velocity v = (v, 0, 0 ) with respect to S. Suppose that some event occurs at position (x, y, z) and time t in S. In the new frame S′ the event is observed at Note that one may eventually set c = ħ = 1, but in the Griffith’s book, they remain in the equations. 3.1 Lorentz Transformations From Griffiths Chapter 3.1 ~ 3.3. The Lorentz transformation may include a rotation of space; a rotation-free Lorentz transformation is called a Lorentz boost.

25 Quantum Field Theory Simultaneity Time Dilation Length Contraction If two events occur simultaneously at different places in refarence frame S’. If two events occur at the same place in S’ If a rod is at rest in reference frame S’, its length is In frame S, both ends must be measured simultaneously, The time measured in S′ is the proper time. The length measured S′ is the proper length. In frame S, they do not occur simultaneously.

26 Quantum Field Theory Velocity Addition By taking the limit c →∞.

27 Quantum Field Theory 3.2 Four Vectors It is convenient at this point to introduce some simplifying notation. We define the position-time four-vector x μ, μ = 0,1,2,3, as follows: Upon Lorentz transform, the 4 vector transforms as The coefficients can be regarded as the elements of a matrix Λ: For example, matrix for boost in x direction is given as All the rest are zero.

28 Quantum Field Theory Note we chose a sign notation commonly accepted nowadays. For the 3-vector, the square of a vector is a scalar. Upon arbitrary rotation, For the 4-vector, the corresponding concept is the Lorentz scalar. Upon arbitrary boost and rotation, I is invariant. In order to define the dot product of 4-vectors, we introduce the metric In general, one may use non-trivial metric representing the curved space-time. The covariant four-vector is defined as

29 Quantum Field Theory A general four vector a μ satisfies the Lorentz transform Higher rank tensors transforms as Other examples of four-vectors where g μν are technically the elements in the matrix g - 1. However, since our metric is its own inverse, we do not need to distinguish it from g μν. Given any two four vectors a μ and b μ, the dot product is invariant: If a 2 > 0, a μ is called timelike If a 2 < 0, a μ is called spacelike If a 2 = 0, a μ is called lightlike s μ μ is a scalar; t μν ν is a vector; a μ t μνλ is a second rank tensor.

30 Quantum Field Theory 3.3 Energy and Momentum We may define a four vector from velocity, A more commonly used four vector is, The energy and momentum of a massless particle is well defined, and the momentum-energy four vector can be defined.

31 Quantum Field Theory 3. Backgrounds : Klein-Gordon equation and Dirac Equation Read Griffiths Chapter 7.1 ~ 7.4. Starting from classical energy-momentum relation: (Klein-Gordon equation) Unfortunately, this equation fails to produce any meaningful wavefunction. Problem 1: Because the differential equation is second order in t, positive and negative energies are both allowed. (Can we find the ground state?) Problem 2: People failed to define preserved density function. (Those who are interested, please read Elster’s note, Ch. 3) Letting the resulting operator act on the “wave function” (why?) The Klein-Gordon equation can be obtained in exactly the same way, beginning with the relativistic energy-momentum relation for a free particle

32 Quantum Field Theory Dirac searched for an equation consistent with the relativistic energy-momentum formula, and yet first order in time.

33 Quantum Field Theory

34 Quantum Field Theory Dirac at first postulate an unseen infinite sea of negative energy particles (electrons). Later, we tend to accept the lower two components as describing antiparticles (positrons) with positive energy. (It is totally up to your interpretation.) In this way, the presence of antiparticles is predicted, and later(!) it was confirmed by experiments. For the spinors, the invariant quantity is In this way, the Dirac equation naturally describes spin ½ particles. They describe, respectively, an electron with spin up, an electron with spin down, a positron with spin down, and a positrion with spin up. It is a spinor, not a four vector.

35 Quantum Field Theory One also needs the matrix γ 5, which is necessary to make pseuodoscalars and pseudovectors. The matrix γ 5 is not present in the spinor description itself. If γ 5 is included in the description of a physical interaction, it means our world is not symmetric under parity inversion, r → – r. Of course (?), our world is NOT symmetric. The weak interaction has maximally broken parity symmetry. All other forces may not break this symmetry. For the actual application of Dirac equation, see Elster’s note, Ch. 4. For example, the g-factor is found to be 2.0. (But.. not accurate enough..)g-factor

36 Quantum Field Theory Using the vector and scalar potential, It turns out that the Maxwell equation can be generalized to Proca equation to describe the motion of spin 1 particle. (We won’t discuss it in this course.)

37 Quantum Field Theory The Klein-Gordon and Dirac equations has been partially successful. One may feel like to proceed to search for “master equation” for a single particle dynamics including 1) particle spin 2) quantum mechanics 3) relativity. Unfortunately, such an attempt is hopeless. Quantum field theory (QFT) is a subject that is absolutely essential for understanding the current state of elementary particle physics. Most of the currently accepted description of elementary particle behavior is based on some formulation of quantized field. Why QFT? In normal QM class, we learned how to quantize particles. Can’t we just quantized relativistic particles? It is simply impossible, because we do not explicitly know which particles should we quantize. E = mc 2 suggests that at high enough energy, particle-antiparticle pair creation is inevitable. Should we or shouldn’t we include quantized wave equation for each of them? One may try to describe only low energy particles so that such pair creation in impossible. But the uncertainty principle, ΔEΔt = ħ, tells us that at short enough time, such possibility can never be excluded. In fact, such virtual particles are constantly created and annihilated, if we interpret QFT appropriately. Why do we need QFT?

38 Quantum Field Theory Another problem arises in the causality. Consider the amplitude for a free particle to propagate from x 0 to x: The evaluation of this integral is somewhat complicated. In the limit x 2 >> t 2, one can find, It is exponentially small, but causality is still violated.

39 Quantum Field Theory The time evolution operator is defined as 2. Backgrounds : Formalism of classical QM. Read Elster Chapter 1. (Note that the chapter ends with the path integral, which I already introduced in the earlier class.) It can be shown that it satisfies the Schrödinger’s equation. Its solution is

40 Quantum Field Theory Time dependent Schrödinger’s equation for the wavefunction:

41 Quantum Field Theory The rest of the note repeats my previous lecture on the path integral, with a more rigorous derivation. In short, the probability amplitude can be calculated by considering all the possible paths to achieve the given state. All paths are allowed, but the paths near action minimizing one contributes strongly. In the limit ħ → 0, only the classical path survives.

42 Quantum Field Theory Reinhardt Chapter 1 : Classical and Quantum Mechanics of Particle Systems Read pages 3 – 20. We do not go beyond the classical QM, but the quantization of phonons are nicely done. Reinhardt Chapter 2 : Classical Field Theory Read pages 31 – 36. The Euler-Lagrange equation for field is One simple example of Noether’s theorem: For each symmetry of the Lagrangian, there is a conserved quantity. Let the Lagrangian be invariant (to first order in the small number ε) under the change of coordinates, Each K i (q) may be a function of all the q i, which we collectively denote by the shorthand, q. The fact that the Lagrangian does not change at first order in ε means that

43 Quantum Field Theory Therefore, the quantity does not change with time. For a simple example that K i (q) is nonzero constant for a specific i, and zero for all other i’s, it indicates the conservation of momentum. Here follows a general description of the Noether’s theorem.

44 Quantum Field Theory

45 Quantum Field Theory

46 Quantum Field Theory

47 Quantum Field Theory Reinhardt Chapter 3 : Nonrelativistic Quantum Field Theory Read pages 57 – 68. Reinhardt Chapter 4 : The Klein-Gordon Field Read pages 75 – 84, 91 – 95, 100 – 102, 106 – 109. Reinhardt Chapter 5 : spin-1/2 Fields: The Dirac Equation Read pages 117 – 119 (eq 5.13 까지 ), 123 – 129. Reinhardt Chapter 8 : interacting Quantum Fields Read pages 211 – 220, 225 – 230, 233 – 240.

48 Quantum Field Theory What other forces exist in this world? Why should there be interactions in the beginning? Local gauge invariance: Read Griffiths Chapter 11.3 (or 10.3 in 2 nd edition.) Weak Interaction It is mediated by three particles W +, W –, and Z 0. They are all massive: around 90 GeV/c 2. The generic shape of the vertices are The vertex factor includes γ 5. The symmetry is maximally broken. As a result, the neutrino has only one helicity (spin). (Unless you start to worry the neutrino mass.) Strong Interaction : It is mediated by massless gluons.

49 Quantum Field Theory The weak interaction allows the quark to change its generation. Typical Feynman diagrams are Fermi’s original suggestion:

50 Quantum Field Theory The vertex factor is not small (g w = 0.653), but the large mass of the gauge particle suppresses the interaction. Only when the energy is large, the effect is noticeable. The neutral weak interaction is much harder to catch, because it usually competes with QED interaction.

51 Quantum Field Theory What are the solved and unsolved problems? 1. Accuracy: QED and the weak interaction calculation are performed in a great detail. For example, Dirac equation predicts that the g-factor is 2. The first order correction QED gives is from the following vertex correction Feynman diagram:g-factor The corrected value is The experimental value is (28) As higher order correction is added, the difference reduces. As of now, the fine structure constant, counting 891 four-loop Feynmas diagrams, isfine structure constant Experimental value is

52 Quantum Field Theory RenormalizationRenormalization : Infinities often arises in the calculation of each Feynmann diagram. What are the remaining issues? Mass of Neutrino (Almost definitely) Higgs particle (Becoming likely) Supersymmetry (Attractive but no evidence yet) Origin of dark matter. Dark energy? Symmetry of the world. Unification of forces. (Electroweak unification was successful.) New physics in the current energy scale is unlikely to be found, unless the most fundamental assumptions of field theory breaks down. (But.. who knows?)

53 Quantum Field Theory Even though some problems remain, it is likely that Quantum field theory can successfully describe almost every physical phenomena we observe. But where does the particles come from? Why do they have the current mass? What is the meaning of the coupling constant? Is this universe just one of the many possible candidates, or is it the only possible one? Answers for those questions may be hidden in the last force – the gravity. Then, our next step is to quantize gravity, but how? Efforts has been made to quantize gravity. There are general agreements such that the gauge particle, the graviton, is a massless spin 2 particle. But the quantized general relativity is not renormalizable. Maybe string is the way to go, but nobody knows the answer.